

Starter Kit - Remote-Bus
Rev. 14

emBRICK® - EPC
CouplingBrick Starterkit-1

Remote Bus Coupling via …

MSVC, CODESYS, LabVIEW, Gamma

Python, Node-RED

The emBRICK® Mission

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 1 of 110

emBRICK® is developed and supported by

IMACS GmbH

Alfred-Nobel-Straße 2

D – 55411 Bingen am Rhein
www.imacs-gmbh.com

www.embrick.de

support@embrick.de

Hotline: +49 (0) 7154 80 83 - 15

IMACS GmbH reserves the right to make changes without further notice to any products herein.

IMACS GmbH makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does IMACS GmbH assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including without limita-

tion consequential or incidental damages. “Typical” parameters which may be provided in IMACS

GmbH data sheets and/or specifications can and do vary in different applications and actual perfor-

mance may vary over time. All operating parameters, including “Typicals” must be validated for each

customer application by customer’s technical experts. IMACS GmbH does not convey any license un-

der its patent rights nor the rights of others.

copyright © IMACS GmbH 2022. All rights reserved.

Reproduction, in part or whole, without the prior written consent of IMACS GmbH is prohibited.

http://www.imacs-gmbh.com/
http://www.embrick.de/
mailto:support@embrick.de

The emBRICK® Mission

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 2 of 110

Content

1 The emBRICK® Mission ... 5

1.1 Typical Applications .. 5

1.2 Basic Characteristics ... 6

1.3 Available Hardware Products .. 6

1.4 Available Host Platforms, Connectivity .. 6

1.5 Available Programming Platforms ... 6

2 Introduction ... 7

2.1 About this Manual ... 7

2.2 References / Manual Overview ... 7

2.3 Homepage .. 8

2.4 Forum ... 8

2.5 Roadmap .. 8

2.6 Package contend .. 8

2.7 Separate required components ... 8

2.8 The Hardware ... 9

2.8.1 Communication structure .. 9

2.9 The Software ... 10

3 Mounting and wiring .. 11

3.1 Configure your PC Network Adapter ... 13

3.2 Main configuration with integratet webpage ... 13

3.2.1 Network settings ... 14

4 Hands on Software - with MSVC ... 16

4.1 Setup the Development Environment MSVC-Express ... 16

4.2 Download the Board Support Package .. 16

4.3 Check Hardware and LAN-Adapter Settings ... 17

4.4 Load and compile the Sample Application ... 18

4.5 Start and explore the Functionality of "Starter Kit" ... 19

4.6 Create your own application .. 21

4.7 The MSVC Remote-Bus Driver ... 22

4.7.1 Features ... 22

4.7.2 Mode of operation ... 22

4.7.3 Involved Files .. 22

4.7.4 Basic implementation .. 22

5 Hands on Software - with CODESYS .. 25

5.1 Setup the Development Environment .. 25

5.2 Download the Demo-Project ... 25

5.3 Check Hardware and LAN-Adapter Settings ... 25

5.4 Setup the Hardware .. 25

5.5 Starting the Demo Project on a PC ... 26

5.5.1 Starting the Runtime ... 26

5.5.2 Select the Type of Communication ... 28

5.5.3 Application POU(PRG) with Mapping and without Mapping .. 29

5.5.4 Logging into the runtime ... 33

The emBRICK® Mission

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 3 of 110

5.6 Starting the Demo Project on a Raspberry Pi .. 35

5.6.1 Installing CodeSys on the Raspberry Pi .. 35

5.6.2 Installing and configure drivers ... 37

5.6.3 Start the Demo Project for the Raspberry Pi ... 41

5.7 Create your own project .. 42

5.8 Create your own brick description ... 42

6 Hands on Software - with LabVIEW .. 43

6.1 Setup the LabView Development Environment ... 43

6.2 Download and Install the Board Support Package... 43

6.3 Check Hardware and LAN-Adapter Settings ... 43

6.4 Load and start the Sample Application .. 43

6.5 Create your own Application ... 45

7 Hands on Software - with Gamma .. 48

7.1 Getting started .. 48

7.1.1 Setup the Development Environment ... 48

8 Hands on Software - with Python .. 49

8.1 Python (Windows) ... 49

8.1.1 Setup the Development Environment ... 49

8.1.2 Installing of the Python Modules ... 49

8.1.3 Download and Unzip the Board Support Package .. 50

8.1.4 Check Hardware ... 51

8.1.5 Load and run the Sample Application ... 53

8.1.6 Start and explore the Sample Application’s ... 56

8.1.7 Create your own application ... 63

8.1.8 IO-Access Functions ... 65

8.1.9 The Python Remote-Bus Driver .. 66

8.2 Python (on Raspberry Pi OS) .. 69

8.2.1 Setup the Development Environment ... 69

8.2.2 Installing of the Python Modules ... 69

8.2.3 Download and Unzip the Python Sample Application’s ... 70

8.2.4 Check Hardware ... 70

8.2.5 Load and run the Sample Application ... 72

8.2.6 Start and explore the Functionality of "Starter Kit"... 76

8.2.7 Create your own application ... 80

8.2.8 The Python Remote-Bus Driver .. 81

9 Node-Red ... 82

9.1 Setup the Development Environment on Windows .. 82

9.1.1 What will be needed ... 82

9.1.2 Installing Node.js .. 82

9.1.3 Installing Node-Red .. 82

9.1.4 Run Node-Red .. 82

9.2 Setup the Development Environment on Raspberry Pi .. 84

9.2.1 What will be needed ... 84

9.2.2 Installing Node.js, Node-Red & npm ... 84

9.2.3 Run Node-Red .. 85

The emBRICK® Mission

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 4 of 110

9.3 Installing of the additionally Nodes .. 87

9.4 Check Hardware ... 89

9.4.1 Connection over Lan-Adapter ... 89

9.4.2 Add Multiple Remote Master to Project ... 91

9.4.3 Connection over Serial (RS458) ... 93

9.5 Load and run the Sample Applications .. 95

9.6 Start and explore the Functionality of emBrick Nodes ... 97

9.6.1 Digital Input... 99

9.6.2 Digital Output .. 100

9.6.3 Analog Input ... 101

9.6.4 Analog Output ... 102

9.6.5 Digital Vis ... 103

9.6.6 Analog Vis .. 104

9.6.7 Digital Force ... 106

9.6.8 Analog Force .. 107

9.7 Create your own application .. 109

The emBRICK® Mission

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 5 of 110

I/Os, in form of Modules (bricks), assembled to

Module-Strings

Remote-Master + Couplers

Local-Master

(examples)

other Strings of bricks (for larger systems)

1 The emBRICK® Mission

The mission of emBRICK® is an open and free I/O system to ...

build compact and industrial suited electronic control systems

by assembling small existing/own embedded boards (bricks) ...

... via a SPI-based local interface and optional remote buses (LAN, WLAN, CAN, RSxxx, ...).

We call this new class of controllers simple EPC (= Embedded Patch-board Controller).

emBRICK® combines in a perfect way the cost-efficient and tailored characteristics of a dedi-
cated embedded system with the ready to use and flexibility of a PLC system.

To ensure a high acceptance, it is an open and free system. I.e. besides buying existing devices,
everyone can develop his own components to realize easily his individually tailored, cost-efficient
and industrial-suited measure and control system.

1.1 Typical Applications

 Small, medium and large size measure and control systems

 Sectoral purpose, with direct sensor/actor interface

 Autonomous single box control solutions i.e. with HMI and communication interfaces

 Rapid hardware prototyping system for control and measuring applications

 PLC replacement (i.e. with a Soft-PLC, IPC or an embedded controller)

 Medium and large size distributed IO-systems (i.e. building automation)

 Physical front-end for IoT (Internet of Things)

For more details see Product_Catalogue (eB_Products) and Application_Manual (eB_Applica-
tions).

The emBRICK® Mission

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 6 of 110

1.2 Basic Characteristics

 free - also for commercial use in own appliances (for pure EMS with a license fee)

 open - supplying reference schematics, protocol source code, samples and starter kits

 adaptable to all systems, using common, low cost standard µCs/components

 half ... third price compared to common control systems (complete system view)

 scalable local and remote topologies, 1 ... >1000 I/Os, up to 1ms update, deterministic

 low own power consumption, average 50mW/slave module in operation (outputs inactive)

 global and sector specific modules for direct connection of various sensors and actors

 easy installation, no configuration necessary, simple plug modules together and use

 works with / programmable by various established, well known platforms / languages

1.3 Available Hardware Products

Beside own developments, currently the following components are available from IMACS:

Slave-Modules > 50 different modules for the sectors: General Purpose, Building
Automation, Process Control (Safety, Medical/Analytics planed)

Master boards Core: Cortex-M3/4, ARM9/11, PIC24/32; HMI: 128x64 ... WVGA

Adaption boards for LAN, WLAN, CAN, RSxxx, Raspberry Pi, Beaglebone Black

Appliances / Enclosures ready Single Box Controller for and top-het rail and wall mounting

Starterkits for MSVC, CODESYS, Raspberry Pi, Beaglebone Black

1.4 Available Host Platforms, Connectivity

emBRICK® can be adapted to all platforms with almost every footprint/performance. For master
units, currently the following system implementations are available (others planed):

Computer platforms PC, Embedded-PC, Module-PC, Raspberry Pi, Beaglebone Black

µController platforms ARM-Ax, ARM-Cortex-Mx, Microchip PIC24 / PIC32

Host Interfaces Ethernet, CAN, RS232, RS485

Wireless Interfaces WLAN

1.5 Available Programming Platforms

emBRICK® can be programmed by various systems, languages and IDEs (integrated develop-
ment interface). Currently for master units the following systems are available (others planed):

OS / RTOS Windows, Linux, FreeRTOS, proprietary

Programming languages C, C++, IEC61131, Model-based (by implementing UML)

Model-based / Soft-PLC CODESYS, radCASE, Enterprise Architect

C/C++ IDEs MSVC, Cocox (GCC), MPLab (Microchip), Geany (Raspberry Pi),
every other C/C++ IDE

-modules, actual Microchip PIC16/24 is used. Others (i.e. Cortex-M0) are planned.

Introduction

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 7 of 110

2 Introduction

2.1 About this Manual

This manual leads systematically from the hardware mounting and software installation, to start
up the emBRICK® adapter starter kit, running the delivered sample application and create your
own applications.

Furthermore, it is used as an open reference platform for the brickBUS® local-master protocol
stack.

2.2 References / Manual Overview

For emBRICK® and brickBUS® the following documents are available. Before reading this doc-
ument, it is recommended to read them in the given order:

System Manual (eB_System.pdf) ... the basic system manual that contains the idea,
the intention and the basic technical concept of emBRICK®/ brick-
BUS® like mechanics, electronics and communication protocol. It
includes the glossary for all other documents.

Application Examples (eB_Applications.pdf) ... overview of typical emBRICK® device con-
figurations and sample constellations for different industrial applica-
tions. It gives an idea how to use emBRICK® as an alternative to a
normal PLC or an individual PCB / embedded system.

Product Catalogue (eB_Products.pdf) ... contains the overviews and detailed
datasheets of all IMACS-available emBRICK® components and
products. This includes electrical and mechanical characteristics,
terminal assignment and notes about their usage.

Programmers Manual (eB_Programmer.pdf) ... is the manual for application software pro-
grammers when using established programing systems like Embed-
ded-IDEs, Soft-PLCs, CASE-Tools but also native C/C++-coding.

FAQ Manual (eB_FAQs.pdf) ... contains answers to the most frequently asked
questions about emBRICK® and its usage.

Developers Manual is the manual for system developers, who like to create their own
slave modules or master adaptions. It includes all technical details
specifications of brickBUS® and also sample schematics and code
samples of the software stacks. This document is only available on
request from IMACS GmbH and needs the agreement on the em-
BRICK® free license conditions. Please contact support@em-
brick.de.

http://embrick.de/downloads/dokumente/eB_System.pdf
http://embrick.de/downloads/dokumente/eB_Applications.pdf
http://embrick.de/downloads/dokumente/eB_Products.pdf
http://embrick.de/downloads/dokumente/eB_Programmer.pdf
http://embrick.de/downloads/dokumente/eB_FAQs.pdf
mailto:support@embrick.de
mailto:support@embrick.de

Introduction

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 8 of 110

2.3 Homepage

The official website is www.embrick.de. It will contain the upper named manuals, detailed
datasheets and drawings, third party components, distributors, FAQs, schematics and source
code, license condition for EMS.

2.4 Forum

Planed

2.5 Roadmap

Currently the following products/enhancements are planed (partners are welcome):

 Wireless Connections

 PoE coupled master for more compact building solutions

 emBRICK-LE, a low energy version with different sleep-mode

 additional mechanical module formats like a box to clip on a top-hat rail

2.6 Package contend

The starter kit CouplingBrick Starterkit-1 contains:

 Coupling-Master (Z-CouplingBrick-02)
 Slave-module (CAE_P-2Rel4Di2Ai-01)
 Carrier Board (CAE_Y-CHBoc200)

Furthermore, via download from the internet:

 Different board support packages (BSP) with sample application (see The Software)
 Other emBRICK® manuals (see References / Manual Overview)

2.7 Separate required components

To operate the starter kit, following separate items are required:

 Computer with Windows XP/7/8/10.
 DC power supply 24V, > 500mA.
 Network cable to connect the coupling-master with the PC (no crossover cable).
 Some electronic components and wires for own experiments (if needed).
 Recommended: A second network adapter or a USB to LAN adapter, to keep your primary

LAN adapter free for normal use.

http://www.embrick.de/

Introduction

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 9 of 110

2.8 The Hardware

The coupling-master is only a coupler between a PC (and other hosts) and an emBRICK®-String.
The String consists of one or several slave-modules. Slave-modules receives the commands/data
from the brickBUS® and controls their I/Os.

picture 1

2.8.1 Communication structure

The application on the PC is the remote-master that sends/receives commands/data to the cou-
pling-master via LAN. The coupling-master is only a coupler. It translates the received data from
LAN to a String of slave-modules. Each slave-module receives the translated commands via
brickBUS® and controls the I/Os.

 brickBUS® brickBUS®

 (W)LAN (includes power) (includes power)

 Power

For a detail information, please read the description of the modules in the System Manual.

PC
(Remote-Master)

LWCS
(Coupling-Master)

emBRICK®-

Slave-Module

Coupling-Master

Z-CouplingBrick-02

more

emBRICK®-

Slave-Modules

Slave-Module

CAE_P-2Rel4Di2Ai-01

Carrier Board

CAE_Y-CHBoc200

http://imacs-gmbh.de/embrick/wp-content/uploads/manuals/eB-System.pdf

Introduction

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 10 of 110

2.9 The Software

For this starter kit diverse Board Support Packages (BSP) for different software platforms/IDE's
are available. They include all drivers and all libraries in source code.

TDB_eB-STK-C1-MSVC for PC (Windows / MAC) with MSVC

TDB_eB-STK-C1-CODESYS for PC (Windows / Linux) with CODESYS

TDB_eB-STK-C1-LabVIEW for PC (Windows / MAC / Linux) with NI LabVIEW

TDB_eB-STK-C1-Gamma for PC with Gamma (in realization)

Mounting and wiring

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 11 of 110

3 Mounting and wiring

Please connect the coupling-master to the slave-module in the order shown in the picture below.
For more detailed information about the components itself (terminal assignment, electrical data
etc.) refer to the Product Catalogue.

picture 2

1. Connect the coupling-master (Z-CouplingBrick-02) with the slave-module (P-2Rel4Di2Ai-
01) in the shown order.

2. Mount the boards onto the carrier board.
3. Connect the 24Vdc and the network cable to the coupling-master (see Product Catalogue,

search for “Z-CouplingBrick-02 and “P-2Rel4Di2Ai-01”). Plug the slave-module into the car-
rier board.

Set only the fourth DIP-Switch ON, the others have to be OFF. So you have set the coupling-master

to the IP address 192.168.3.10. Connect it to your PC via LAN cable and configure it as specified

here “0

R1 22k

P-2Rel4Di2Ai-01 DIP-Switch for

IP-adress selection

Pin 20

2 Relais

with LED
4 LEDs of

the Inputs

Power 24Vdc

Z-CouplingBrick-02

Potentiometer 10k

Pin7

Button

Rel1

Rel2

Ethernet Connector

to PC/Host-System

http://embrick.de/downloads/dokumente/eB_Products.pdf

Mounting and wiring

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 12 of 110

4. Configure your PC Network Adapter”. Other possible IPs for the coupling-master docu-
mented in the Product Catalogue search for “Z-CouplingBrick-##”.

5. Recommended: With three additional electronic parts, you can test the starter kit function-
ality.
a) Connect a potentiometer (10kOhm) via a series resistor (22kOhm) on pin 14 (ground),
pin 15 (analog input), pin 19 (24V).

b) Connect a button on I/Os pin 7 (digital input) and pin 8 (ground).

Result: Now the hardware is mounted and wired to start the installation of software.

Mounting and wiring

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 13 of 110

3.1 Configure your PC Network Adapter

In this step you prepare your PC to communicate via LAN with the coupling-master. For this we
recommend to use a separate network card or an USB-Ethernet adapter (to keep your primary
LAN connection untouched).

To setup IP-address of the LAN-Adapter follow these steps (for Windows 7):

 -> in Control Panel

 -> Network and Internet –> Network and Sharing Centre –> Change adapter settings

 -> Choose your network connection (click right mouse button) –> Properties

 -> Internet Protocol Version 4 (TCP/IPv4) (double click)

 -> check box „Use the following IP address: “

 -> enter the IP address (i.e. 192.168.3.250) and the Subnet mask 255.255.255.0

This configuration will be later tested with a tool.

Now you can start with the software package you prefer:

-> jump to chapter 4 Hands on Software - with MSVC

-> jump to chapter 5 Hands on Software - with CODESYS

3.2 Main configuration with integratet webpage

CouplingBricks (patBridge / uniBridge and airBridge) with preinstalled software versions 0.53 and
later have an integrated webinterface, on which you can configure main settings of the brick.

To open the configuration page, you must connect your CouplingBrick with your computer like
explained in the previous chapter a call in a webbrowser the IP-address you have set up. The
pre-configured IP-address is 192.168.3.10.

When the page loads up in your browser you will see the following overview:

Before you can communicate with the remote Target, you must set the “Master comm. Chan.”. If
you want to use the CouplingBrick over an ethernet communication, you will change the “Master
comm. Chan.” To “LAN/WLAN”. If you want to communicate over Modbus Large Block (RTU or

Mounting and wiring

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 14 of 110

TCP), you will set up the setting to “ModBUS LB”. After changing the communication channel,
you must restart your system. Now you can communicate with your remote Master.

You can also change with “brickBUS synch. To Master” whether your CouplingBrick will update
the brickBUS synchronous or asynchrosous with the incoming data from the remote master.
“brickBUS synch. To Master: No” means, that the brickBUS will be updated asynchronous and
continguous.

With “Remote timeout” you can set the delay time of the incoming data between the remote a
local master. When data arrived outside the timeout, the CouplingBrick will signal this with an
error code (blink code with the three LEDs).

3.2.1 Network settings

3.2.1.1 Switching IP Address with PC-visualization

You can set the IP address of the CouplingBrick in the menue “Network Settings”.

The IP Adress is set after a restart of the coupling master. Before you do this, set the DIP-switches
to “0001”. If you don´t set them to the position “0001”, the IP Adress of the DIP-switch is set. You
can reboot the system by clicking on the onboard reset button.

3.2.1.2 Switching IP Adress with DIP-switch

The DIP-switch position determines a value between 0..15 as: Sw1 + Sw2 x2 + Sw3 x4 + Sw4
x8.

The standard position of the onboard DIP-switch is “1000” (DIP Switch value 8). In this case the
IP 192.168.3.10 is set to your coupling master.

Usage during power on:
DIP switch value 0: use DHCP
DIP switch value 1: ……………. IP-address set in the Visualisation
DIP switch value 2 - 7: unused
DIP switch value 8 ... 15: determines fix IP-address (192.168.3.10 ... 17)

Mounting and wiring

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 15 of 110

Here is a list of the switch positions and the resulting IP-addresses:

Switch-positions DIP-switches value in the
VIS

IP-Address

0000 0 DHCP

0001 1 Software set Adress

1000 8 192.168.3.10

1001 9 192.168.3.11

1010 10 192.168.3.12

1011 11 192.168.3.13

1100 12 192.168.3.14

1101 13 192.168.3.15

1110 14 192.168.3.16

1111 15 192.168.3.17

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 16 of 110

4 Hands on Software - with MSVC

4.1 Setup the Development Environment MSVC-Express

To write and compile your own applications you need a C/C++ IDE (integrated development en-
vironment). Here we use the free Express Version of VisualStudio 2010 (or newer).

Please download the official free express version here ...

http://www.visualstudio.com/downloads/download-visual-studio-vs

... and follow the given instructions

Result: Now you can create and edit applications and compile them.

4.2 Download the Board Support Package

In this step the board support package "Z-CouplingBrick_MSVC_V#" will be downloaded from the
web and unziped.

1. Download the software part Z-CouplingBrick_MSVC_V#.zip here.

2. Unzip the Z-CouplingBrick_MSVC_V#zip into any folder on your PC.

The BSP contains also the tool NetBRICK to explore the LAN environment and search for con-
nected coupling-masters (LWCS-Boards).

Result: Now you are ready to compile and start the sample application.

http://www.visualstudio.com/downloads/download-visual-studio-vs
http://embrick.de/downloads/remotemaster/windows/Z-CouplingBrick_MSVC_V0.04.zip

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 17 of 110

4.3 Check Hardware and LAN-Adapter Settings

Before starting with the software development, check the hardware by switch on the 24V power
of LWCS board and starting "NetBrick.exe" (it is delivered inside the main folder of the BSP.
NetBrick_new.exe works with firmware versions of the CouplingBricks from V0.37 and the Net-
Brick_old.exe works with firmware versions V19 and V20).

NetBRICK is a useful tool that checks all network ports from your PC whether there is a coupling-
master connected with its IP-address. All founded coupling-masters will be listed with their IP
addresses. With NetBRICK you can simply check ...

- if your PC Ethernet-Adapters is correct configured

- if the coupling-master is working and connected/found

- the IP-addresses of the available coupling-master

To start, double click on NetBrick.exe

picture 3

In this picture you can see the output of the NetBrick at first all your Ethernet-Adapters are listed
and there after comes the detected coupling-master with the IP 192.168.3.10.

Result: Now you can access the coupling-master and slave-modules.

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 18 of 110

4.4 Load and compile the Sample Application

In the folder you have unzipped the “Z-CouplingBrick_MSVC_V#” software package you will find
a file named “Starterkit.sln”. When you now double-klick it the Microsoft VisualStudio 2010 on
your PC will open up this project. When you use a newer version VisualStudio will ask you whether
you want to import it or not – then you choose import.

Now you choose “Release” instead of “Debug”

picture 4

and now go to “Debuggen” -> “Starten ohne Debugging” or you press Strg + F5 for compile and
start.

picture 5

Info: On the two pictures you can see on the left side the files that are integrated to the project.
The “Starterkit.cpp” includes the functional application.

Result: A window is opened from the application.

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 19 of 110

4.5 Start and explore the Functionality of "Starter Kit"

The window now is opened from the application looks like this:

picture 6

Now you have to give in the IP address of the coupling-master, in this case it´s the “192.168.3.10”.
This is also the IP which NetBRICK is given back at the Check Hardware and LAN-Adapter Set-
tings.

Now the application is started and has read out the module ID and it´s software and protocol
versions. These are shown in picture 7. At the first start the IP is required, on the second not
because it was saved in this file Release/datei.txt

picture 7

Result:

Now the system is running, so there is Relay1 toggling with 1Hz. Input 1 is switching Relay2 and
the analogue input of I5 is continuous read out and be shown on the screen. You can manipulate
the potentiometer and button to show the changing. The inputs are shown on the screen after the
analogue input if no input is active there are four zeros, and each zero switch to one when the
input is activated.

The clamp numbers of the IOs are defined in product catalogue search for “P-2Rel4Di2AI”.

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 20 of 110

To exit, press [ESC] or [Ctrl+C] or you click on the x from the window.

For more details about the hardware, see Product Calatogue (search for "Z-CouplingBrick-02",

“P-2Rel4Di2Ai-01”).

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 21 of 110

4.6 Create your own application

This sub chapter describes how create your own application based on the “Sample Application”
descripted above.

Preparation:

 Unzip the Z-CouplingBrick_MSVC_V#.zip again in another folder, i.e. …/example.

 Open the project files (Starterkit.sln) for a Visual Studio 2010 and open – StarterKit.cpp.

You can change the functional code in the DEFINES and the while loop of the StarterKit.cpp.

Currently, the application controls the Relay1 so that it alternates every second. Now change the
application that Relay2 alternates every second too.

1. Create a new definition for the second Relay “#define MY_RELAY2 1,1,0,1”

The meaning of 1,1,0,1 is explained in chapter 4.7.4.2 IO-Access Functions.

Add it after near the other defines marked with /*---DEFINES---*/.

2. Write the command “bB_putBit(MY_RELAY2, flash);” in it into function
while (!GetAsyncKeyState(VK_ESCAPE)) after bB_putBit(RELAY1, flash).

3. Start the compilation and execution of your application.

Result: Now the Relay1 and Relay2 alternates every second.

When you want to access the other future of slave-module then search for “P-2Rel4Di2AI” in
Product Catalogue.

http://embrick.de/downloads/remotemaster/windows/Z-CouplingBrick_MSVC_V0.04.zip

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 22 of 110

4.7 The MSVC Remote-Bus Driver

This driver provides a simple but efficient remote-bus access to the connected emBRICK strings
(string = Coupling-Master + n x I/O-modules), further described as “node” via Ethernet (TCP/IP).

It is written in C++ to allow an easy adaption/integration into own code/projects. As of right now
the driver is not available as a LIB or DLL, although it is possible to create some of the supported
code.

4.7.1 Features

The driver supports:

 Establishing the connection to the node(s) that is (are) connected to your PC via Ethernet.

 Read the configuration data of each node and its connected bricks

 Read and write I/O-data to each emBRICK node (and its bricks)

4.7.2 Mode of operation

Therefore, the actual native SPI update process (local emBRICK Bus) is controlled by the cou-
pling master, the operation via this driver (remote emBRICK bus) contains only a few simply steps.

The actual data exchange is managed via a separate input and output buffer (shared memory).
After the initialisation a permanent triggered process have to be called to execute the update
function. Parallel to this, a set of simple access functions (in C) allows a synchronized read-
ing/writing access to the I/O-values.

During the initialization the node returns miscellaneous config-data to the driver that are used to
locate the start of each I/O-module in the buffer.

4.7.3 Involved Files

The driver consists of two files

embrick.cpp

Contains the functions are called from the application. There are all defines for the size of the
buffers and the task with the periodic communication to the coupling-master.

embrick.h

In the embrick.h all functions of the embrick.cpp are declared which parameters the functions
need and they are given back.

For the sake of completeness, but not part of the driver itself:

Starterkit.cpp

In the Starterkit.cpp is the programmed application with the _tmain() and all the start-up functions
for the communications are called once. The application uses simple put and get functions to
set/reset an output or to read in the inputs.

4.7.4 Basic implementation

In an own application the following steps have to be implemented:

4.7.4.1 Initializing and Starting

Initializing and starting the I/O-update has been split into two function groups

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 23 of 110

a) Initialize the driver by bB_Init(void). It connects to the node(s) specified in the command
prompt at start-up and receives information about all connected modules. The module information
can then be read by the user by various get-functions:

bB_GetConfNumModules(node)

bB_getModulID(node, moduleNumberInString)

bB_getModulSWVers(node, moduleNumberInString)

bB_getModulebBVers(node, moduleNumberInString)

These methods are also described in embrick.h.

b) After initializing, the user can call bB_Start(updateRate).This function starts a thread that trig-
gers an internal function emBRICKTask() transmits and receives data to and from the node(s)
periodically. This thread also takes care of reconnecting to the node in case it lost power or got
disconnected briefly.

If your system offers an own time repetition mechanism, it´s also possible to call the emBRICK-
Task() by this function.

4.7.4.2 IO-Access Functions

The data of the I/O slave-modules are organized in a byte buffer for each node (a separate one
of in- and out-data). To access this data, you need to define the ...

node number (here always 1 because we have only one node),

module number (1...) position of IO-module in the node (emBRICK-string)

offset_position(0...) relative position/offset of the data inside the module image. For de-
tails of each module refer to Product Catalogue, chapter 6.x.x., "pro-
cess data image"

bit_position (0..7) only in case of a bit access, indicates the bit in the selected byte

The actual data access is performed by 6 simple functions and that differ in the direction (read-
ing/writing) and the data width (bit, byte, word). Of course also own functions can be developed
to do this.

data reading (from IO-modules to application):

bB_getBit(node, module, offset_pos, bit_pos)

bB_getByte(node, module, offset_pos)

,bB_getShort (node, module, byte_pos)

writing (from the application to the IO-modules):

bB_putBit(node, module, offset_pos, bit_pos)

bB_putByte(node, module, offset_pos)

bB_putShort (node, module, offset_pos)

About their exact parameters and their return value, refer to the comments/description inside the
files embrick.h and embrick.cpp, where they are defined and implemented.

Note: Access to the byte buffer is already buffered and secured by mutexes.

Tipp: To avoid the manual input of the single digits in the function parameter, create a macro
definition for each I/O you like to use that contains these digits.

Hands on Software - with MSVC

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 24 of 110

Example:

#define MY_BUTTON 1,1,0,1 // Node 1, Module 1, Byte 0, Bit 1

This allows the coding bB_getBit(MY_BUTTON) instead of bB_getBit(1,1,0,1)

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 25 of 110

5 Hands on Software - with CODESYS

5.1 Setup the Development Environment

Download the newest version of the freely available CoDeSys EXE (works only with the 32-Bit
Version) from http://www.codesys.com/download.html (tested on version between 3.5.13.20 to
3.5.16.40). If you are new to CODESYS, you might have to register to the CODESYS website to
gain access to the download.

Install CODESYS.

5.2 Download the Demo-Project

 Download the demo project: "BSP_Z-CODESYS-Brick-V0.13.zip" from the web.
 Unzip the file and save it anywhere to your computer.

5.3 Check Hardware and LAN-Adapter Settings

see 4.3

5.4 Setup the Hardware

Follow the steps below or stick to the instructions in Chapter “Mounting and wiring”.

 Connect the Localmaster (Z-PadBridgeMx) to the emBRICK®-module (P_2Rel4Di2Ai-01)

 Set the DIP-Switch to ‘0001’.
 Supply the Localmaster with 24V
 Test the connectivity by sending a ping to 192.168.3.10.

If necessary, configure your network card for the right subnet. A connection can also be estab-
lished via a USB-network adapter.

http://www.codesys.com/download.html
https://www.embrick.de/downloads/remotemaster/CODESYS/BSP_Z-CODESYS-Brick-V0.13.zip

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 26 of 110

5.5 Starting the Demo Project on a PC

Note: Depending on your operating system and CODESYS version, you might get additional
dialogs that are not covered in this guide. As a rule of thumb, press ‘Yes’ or ‘OK’ on all
other dialogs.

To ease starting the Demo-Project, it has been packed into a projectarchive which is prebuilt and
contains all necessary files. To start, open the file “emBRICK_demo.projectarchive” you just un-
zipped. CODESYS will start automatically. After CODESYS finished starting, a window will ap-
pear:

Click “Extract” to confirm the prompt.

A prearranged CODESYS project will open in the CODESYS IDE.

The CODESYS IDE has now started. To start the Application, a runtime is needed.

5.5.1 Starting the Runtime

For Windows, 3S provides a free demo runtime that will run for 2 hours.
After a standard installation, the runtime has usually started but is not running.

To check if the CODESYS runtime has started, search for the Control Win V4 icon in your win-
dows statusbar (bottom right corner of your screen).

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 27 of 110

5.5.1.1 Runtime has started

Now that the CODESYS runtime has started, you can activate it. Do so by rightclicking on the
runtime icon in your statusbar and select “Start PLC”.

The runtime icon should change to:

The runtime is now active. Continue to the next chapter.

Note: It will only work for 2 hours after activating, after which it has to be restarted man-

ually.

5.5.1.2 Runtime has not started

If your runtime has not started, it has to be started manually.

The runtime can be found in your CODESYS installation directory. The standard path is “c:\Pro-
gram Files (x86)\3S CODESYS\GatewayPLC\CODESYSControlService.exe”. You should also
find it through the Start Menu (All programs → 3S CODESYS → CODESYS Control Win V3 →
CODESYS Control Win V3).

The Runtime should look similar to this.

When starting the runtime manually, you won’t have to activate it.

Note: Without a license it will only work for 2 hours after activating, after which it has to be re-
started manually.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 28 of 110

5.5.2 Select the Type of Communication

Double click the LocalMaster and the “Internal Parameters” Tab should be visible.

In this tab are all options that are needed to select a communication type.

There are only four options that are changeable:

Communication Type <-- To select over which way the communication should be estab-

lished. Lan or RS-485?

If RS-485 is selected:

COM Port <-- Which COM Port should be used?

COM Baudrate <-- At which Baudrate should the COM Port operate? (PiBrick: 460800 Baud)

Modbus Slave Number <-- Which Slave Number has the Modbus Slave ?

If Lan is selected:

IP-Adress <-- Which IP Adress has the Local Master?

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 29 of 110

5.5.3 Application POU(PRG) with Mapping and without Mapping

The Application code POU(PRG) and POU_withoutMapping both are wriiten in the Programming
Language ST.

The Code “POU(PRG)” written with declared Variables (Mapping)

If you double click on the Mapping Symbol the Variable Name you give will be declared and you
can’t use the Adress anymore.

The Code “POU_withoutMapping(PRG)” written without declared Variables (without Mapping).

The Program is on start automatically setted on POU (PRG).

If you want to use the POU_withoutMapping you can change it by doing this click the right mouse
click above “CAE_P_2REL4Di2Ai_01” and select “E/A-Abbild von CSV importieren”.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 30 of 110

Then in the opened window you select “CAE_P_2Rel4Di2Ai_01_ohneMaping.csv.

Because here is the Mapping is not active. We can code with the Variable Name and the with the
Adress.

At least we change the main task.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 31 of 110

To change the main task we doubleclick on the left sidebar on MainTask(IEC-Tasks) then we
doubleclick on “Aufruf hinzufügen”.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 32 of 110

Then select POU_withoutMapping and click on “OK”.

Next we delete “POU” while we click on “POU” and click “Aufruf entfernen”.

You can easily change in the opposite way if you want programming with Mapping.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 33 of 110

5.5.4 Logging into the runtime

Make sure CODESYS Control Win V3 has started, then log into the runtime.

Your application will run indepently from your CODESYS IDE in the CODESYS runtime. You can
make changes to your application while the last version of your application is running. To update
(or create) the Application that was downloaded to the runtime, you will have to login into the
runtime. In this process the Application will be compiled and downloaded to your runtime. After
logging in, you will have access to the debugging methods of CODESYS.

First, log into the application as shown below.

This window should appear when connecting to the runtime for the first time. Confirm it by clicking
on “Yes”.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 34 of 110

Note: in some cases, you will have to login twice. You are logged in when your IDE looks similar
to the next picture.

Now you should be connected to the runtime, but the application has not started yet. Start the
application by clicking on the “Start” button.

Result: The first relay (“Rel 1”) should now toggle every second. The second relay (Rel 2) is
activated by connecting Input 1 (“Button”, or Pin 7) to ground (Pin 8).

The I/Os can also be watched inside the IDE. To do so, expand the emBRICK®_Localmaster,
then double-click on the module P_2Rel4Di2Ai-01 and switch to the PCI-BUS I/O-Mapping.

This view lists all I/Os of the emBRICK®-modules. Typically for CODESYS you can easily connect
variables of your application to the I/Os of the emBRICK®-module by simply doubleclicking into
a variable field. In this Demo-Project the I/Os are also mapped to different elements in the visu-
alization.

The application code itself can be found in “POU(PRG)” and is written in ST.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 35 of 110

5.6 Starting the Demo Project on a Raspberry Pi

You need a Raspberry Pi 3B or 3B+ as a master device to control our bricks.

You can use a normal Raspberry Pi with its ethernet port or/and a USB to ethernet adapter to
control the bricks with our CodeSys library over ethernet.

If you want to control the Bricks over RS485 with a Raspberry Pi then you need a USB to RS485
adapter or our CAE_Z-RaspberryBrick-1#-RB as a master with its build in RS485.

5.6.1 Installing CodeSys on the Raspberry Pi

Download CodeSys Control for Raspberry Pi SL from the CodeSys Store and install it through
the Packet Manager.

In the next window click on install and navigate to the downloaded CodeSys Control for Raspberry
Pi SL packet and install it.

After sucssesfull installation and restart of CodeSys you should now finde the new entry “Update
Raspberry Pi” in “Tools”.

https://store.codesys.com/codesys-control-for-raspberry-pi-sl.html
https://store.codesys.com/

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 36 of 110

After opening the new entry, you should see the following menu:

Enter your login credentials aswell as the IP of your Raspberry Pi and click on Install.

During the Installing will be pop up this Window select there Multicore and click “OK”.

Now the CodeSys runtime gets installed on the Raspberry Pi.

Our Test got performed with Versions between V3.5.13.20 to V4.0.1.0.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 37 of 110

5.6.2 Installing and configure drivers

5.6.2.1 Ethernet

5.6.2.1.1 Installing the driver

You can use the build in ethernet port of the Raspberry Pi to controll our bricks, but then you can’t
use the port to connect to the internet.

Or you use the build in port for internet and use a USB to ethernet adapter for the communication
with our bricks.

When you use the build in port you don’t need to install a driver.

When you use a USB to ethernet adapter it might be possible that you need to install a driver.

Our USB to ethernet adapter didn’t need a driver. We just plugged it in and checked the usb
devices with “lsusb” for our adapter:

Device 005 is our adapter.

Now with “ifconfig” you can list all ethernet ports with their ip address.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 38 of 110

5.6.2.1.2 Configuring ethernet ports

You need to set the IP of the ethernet adapter you would like to use to the ip range of
“192.168.3.10” or any other IP you selectet with the dip switches or the over the VISU.

To do that login to your pi with putty and chang the file “dhcpcd.conf”

sudo nano /etc/dhcpd.conf

Now add the following lines after the last line from the “dhcpcd.conf” file

Ethernetadapter for Bricks

interface eth1

Do not choose the same ip as the Local Master

static ip_address=192.168.3.50/24

static routers=192.168.3.1

static domain_name_servers=192.168.3.1

eth0 is the build in ethernet port and eth1 is the USB to ethernet adapter.

If you want to use the build in port change all eth1 in the upper code to eth0.

Save the changes on the file with “CTRL+X” and then confirm with “Y” and then “Enter”.

Now everything should be ready to adapt the Demo Project.

See chapter 5.6.3.

https://www.putty.org/

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 39 of 110

5.6.2.1 RS485

5.6.2.1.1 Installing the driver

When you use a USB to RS485 adapter it might be possible that you need to install a driver.

If you use our CAE_Z-RaspberryBrick-1#-RB as a master then you need to use our open-source

driver. Just follow our tutorial on Github page to install them.

https://github.com/IMACS-GmbH/emBRICK/tree/main/Hardware%20Products/RaspberryBrick/Driver-SPI2Serial-SC16IS740

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 40 of 110

5.6.2.1.2 Configuring RS485

Now the settings for the COM Port must be made.

If you don’t know where to set these settings then first read chapter 5.5.2.

The COM Port should always be 1 on the Raspberry Pi. That’s because of the CodeSys config
file “CODESYSControl.cfg“. If you use the our drivers then this file gets installed automatically.

Now everything should be ready to start the Demo Project.

See chapter 5.6.3.

5.6.2.1.3 Configure CODESYSControl.cfg

Open File:

sudo nano /etc/CODESYSControl.cfg

The following lines must be added to the CODESYSControl.cfg:

[SysCom]

Linux.Devicefile=/dev/ttySC

portnum := COM.SysCom.SYS_COMPORT1;

Hit CTRL+X and confirm with Y to save the changes to the file.

With theses lines CodeSys can “see” the Serial Device.

Note:

If you update the installed CodeSys runtime on your pi you first need to deinstall the already

existing runtime.

In that process CODESYSControl.cfg gets deleted and a new blank one gets installed.

That means after every Runtime change you need to edit this file!

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 41 of 110

5.6.3 Start the Demo Project for the Raspberry Pi

Note:

Depending on your operating system and CODESYS version, you might get additional dia-
logs that are not covered in this guide. As a rule of thumb, press ‘Yes’ or ‘OK’ on all other
dialogs.

To ease starting the Demo-Project, it has been packed into a projectarchive which is prebuilt and con-
tains all necessary files. To start, open the file “emBRICK_demo_rpi_rs485.projectarchive” you just
unzipped.

CODESYS will start automatically. After CODESYS finished starting, a window will appear:

Click “Extract” to confirm the prompt.

After that you can follow the instruction to run the demo project in chapter 5.5.2.

Hands on Software - with CODESYS

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 42 of 110

5.7 Create your own project

The following instructions are aimed towards engineers already familiar with CODESYS. As such,
it will not provide step-by-step instructions.

To create your own project, follow these steps.

 Create a new Standardproject. For PC, choose “CODESYS Control Win V3” as device.
 Open the Library Repository (Tools -> Library Repository) and install the library “emCoSys”

(you might have to display all files).
 Open the Device Repository (Tools -> Device Repository) and install the devices „em-

BRICK®_LocalMaster“ and “CAE_P_2Rel4Di2Ai-01”

 Add the devices:
Add Localmaster (Switch to “Devices” in the window on the left side if you haven’t already;
Rightclick “Device (CODESYS Control Win V3)” -> ”Add Device” -> Miscellaneous -> em-
BRICK®_LocalMaster)

 Add emBRICK®-Module (Switch to “Devices” in the window on the left side if you haven’t al-
ready; Rightclick “emBRICK®_Localmaster”->” Add Device” -> Miscellaneous ->
CAE_P_2Rel4Di2Ai-01)

 Expand the emBRICK®_Localmaster, then double-click on the module CAE_P_2Rel4Di2Ai-
01 and switch to the PCI-BUS I/O-Mapping. Connect the variables in your Application with the
I/Os of the module. Keep in mind that a simple DI or DO requires a single-bit-variable (like
BOOL) while an analog Input requires a 2-Byte-variable (like WORD).

5.8 Create your own brick description

The devdesc.xml files are used to describe the Brick itself and its I/Os.

To create your own description, open the Programmers Manual and see chapter 8.7.1.

http://embrick.de/downloads/dokumente/eB_Programmer.pdf

Hands on Software - with LabVIEW

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 43 of 110

6 Hands on Software - with LabVIEW

6.1 Setup the LabView Development Environment

If you have not already Labview 2015 or higher installed, you can get an evaluation version for 1
Month at http://www.ni.com/download-labview/ and follow the installation instructions.

Result: Now you can create and edit applications and compile them. The software ist developed
and tested with Labview 2016, previous versions might work.

6.2 Download and Install the Board Support Package

Download the Labview Starterkit from:

eB_LabVIEW Starterkit.zip

Extract the zip file to you’re a into a new Folder of your choice

6.3 Check Hardware and LAN-Adapter Settings

see 4.3

6.4 Load and start the Sample Application

 Doubleclick on Starterkit.vi. The application opens.

If you have configured a different IP-Address for the Starterkit than “192.168.3.10” open the

block diagram with “CTRL E”.

http://www.ni.com/download-labview/
http://embrick.de/downloads/remotemaster/LabVIEW/eB_LabVIEW%20Starterkit.zip

Hands on Software - with LabVIEW

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 44 of 110

In the first frame of the sequenzdiagramm change the input string for the IP-Address for the in-

put to ReadConfig.vi. Change back to the front panel with “CTRL E” and press the start button to

start the application.

Hands on Software - with LabVIEW

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 45 of 110

If the “Status of slave modes for the first module is 0, stop and start again. If it is still 0, check

the wired connections and whether the IP-Address is correct.

Press the “Stop” button for more than one second to stop the application.

Result: The “Status of slave modes” is 1 for the first module. The application runs and one relay

switches each second.

6.5 Create your own Application

• Open IOConfig.vi and copy O_Reley1 and paste it

• Rename O_Relay1_2 to O_Relay2

• Go Back to Starterkit.vi and open the block diagram

• Select the constant cluster connected to the O_Relay1 global variable and copy

• Paste it under

• Select the O_Relay2 global variable

Hands on Software - with LabVIEW

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 46 of 110

• Change the BitPos constant in the cluster to 1

• Select O_Reley2 on the connected global variable

• In the second frame of the sequence, drop a local variable for reading into the timed loop

where the “Embrick” vi is called.

• Select DI1

Hands on Software - with LabVIEW

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 47 of 110

• Copy O_Relay1 with its vi connected to in the other timed loop

• Drop it under the new created local variable “DI1”

• Connect DI1 to the input port “Wert” of the vi

• Place another local variable for writing and select OutputData

• Connect the output port “OutputData” to the new createt local variable

• Select O_Relay2 from the global variable

• Save the application and run it

Result: While one Relay is switching every second, the other one is switching according to the
digital input DI1 very fast. Hands on Software – with Labview

Hands on Software - with Gamma

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 48 of 110

7 Hands on Software - with Gamma

7.1 Getting started

7.1.1 Setup the Development Environment

<in preparation>

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 49 of 110

8 Hands on Software - with Python

8.1 Python (Windows)

8.1.1 Setup the Development Environment

If you have not already Python 3.7 or higher installed, you can get a free version at http://www.py-
thon.org/downloads/ and follow the installation instructions.

Result: Now you can create and edit applications and compile them. The software is developed

and tested with Python 3.7 and above, previous versions might work.

8.1.2 Installing of the Python Modules

First check if you have installed the newest pip installer. For that we press the “Windows Button
+ R” and type “cmd” in the opened Window and press “Enter”.

Then we type “pip install –upgrade pip to upgrade the pip installer.

Installing pip

After that we install the needed Modules:

For that we type:

“pip install emBRICK”

and it will automaticly install all modules we needed included the emBRICK Driver for a Commu-
nication over Ethernet, Modbus RTU & Modbus TCP.

http://www.python.org/downloads/
http://www.python.org/downloads/

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 50 of 110

installing python modules

8.1.3 Download and Unzip the Board Support Package

Download the Python Starterkit from:

Python-starterkit.zip

Extract the zip file to you’re a into a new Folder of your choice

The Zip Data contains the Tool netbrick.exe and the Example Applications.

In the Folder examples:

- # Example files for a communication over Ethernet

o 1node_eth.py

o 2nodes_threaded_eth.py

o default_eth.py

o default_threaded_eth.py

- # Example files for a communication over Modbus RTU (RS485)

o 1node_rtu.py

o 2nodes_threaded_rtu.py

o default_eth.py

o default_threaded_eth.py

- # Example files for a communication over Modbus TCP/IP

o 1node_tcp.py

o 2nodes_threaded_tcp.py

o default_tcp.py

o default_threaded_tcp.py

also, the tool NetBRICK to explore the LAN environment and search for connected coupling-
masters (LWCS-Boards).

https://github.com/IMACS-GmbH/emBRICK/raw/main/Protocol%20Stacks/remoteBUS/Python%20via%20TCP-IP%20or%20RSxxx%20(using%20Windows-PC%20or%20RaspberryPi)/Python-starterkit.zip
https://github.com/IMACS-GmbH/emBRICK/raw/main/Protocol%20Stacks/remoteBUS/Python%20via%20TCP-IP%20or%20RSxxx%20(using%20Windows-PC%20or%20RaspberryPi)/Python-starterkit.zip

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 51 of 110

8.1.4 Check Hardware

Before starting with the software development, check the hardware by switch on the 24V power
of LWCS board.

8.1.4.1 Connection over Lan-Adapter

Start the Application "NetBrick.exe".

NetBRICK is a useful tool that checks all network ports from your PC whether there is a coupling-
master connected with its IP-address. All founded coupling-masters will be listed with their IP
addresses. With NetBRICK you can simply check ...

- if your PC Ethernet-Adapters are correct configured

- if the coupling-master is working and connected/found

- the IP-addresses of the available coupling-master

To start, double click on NetBrick.exe

starting netbrick.exe

In this picture you can see the output of the NetBrick at first all your Ethernet-Adapters are listed
and there after comes the detected coupling-master with the IP 192.168.3.10.

Is your PC Ethernet-Adapter not correct configured the Netbrick.exe will not detect a coupling-
master, to configure the Ethernet-Adapter press “Windows Button + R” on your Keyboard and
type “ncpa-cpl”. A window named “Netzwerkverbindungen” will opened.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 52 of 110

Netzwerkverbindungen

Here we right-click on the Ethernet Adapter and click on “Eigenschaften”.

Configuration of the Ethernet Adapter

In opened Window we Doppel click on “Internetprotokoll, Version 4(TCP/IPv4)” and configured it
like in the Screenshot and press on “OK” and save the configuration. If we start the netbrick.exe
now. The coupling-master will be shown.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 53 of 110

FiguIPV4 Configuration

Result: Now you can access the coupling-master and slave-modules.

8.1.4.2 Connection over Serial (RS458)

First check with which Com Port is your Serial Adapter connected. For that press “Windows Button +
x” on your Keyboard and then on “g” to open the “Geräte-Manager”.

The USB Serial Port is connected on COM5

8.1.5 Load and run the Sample Application

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 54 of 110

If you test all the Sample Application’s you needed following Hardware:

For the Sample Appication’s “1node.py” and “1node_threaded.py”:

 1x Remote Master with the Software Ver. 0.61

 1x P-2Rel4Di2Ai-0# Module ID = 5-131

Remote Master with 2Rel4Di Ethernet

Remote Master with 2Rel4Di Serial

For the Sample Application’s “2node.py” and “2node_threaded.py”:

 Node 1:

 1x Remote Master with the Software Ver. 0.61

 1x P-2Rel4Di2Ai-0# Module ID = 5-131

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 55 of 110

Node 2:

1x Remote Master with the Software Ver. 0.61

1x P-2Rel4Di2Ai-0# Module ID = 2-181

Node1 and Node2 per Ethernet

Node1 and Node2 per Serial

In the folder you have unzipped the “Python_starterkit” software package you will find a folder
“examples”.

Python_starterkit unzipped

Here you can find all Sample Application’s.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 56 of 110

The Sample Application's

8.1.6 Start and explore the Sample Application’s

Before starting the Sample Application’s, we check and edit the configuration.

First open a Sample Application’s with a right-click on it and then “Edit with IDLE” then click on
“Edit with IDLE 3.9”

Edit Sample Application

8.1.6.1 Ethernet

8.1.6.1.1 1node_eth.py

Here we change in the Line 17 the Ip Address if your Coupling Master have a another Ip. After
that we save the changes with “Strg + s” and close the window.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 57 of 110

1node_eth.py Ethernet

After that we can double click on the .py file and the Sample Application will be started.

Running 1node.py Ethernet

Result:

Now the application is started and has read out the Local Master ID, module ID and it´s Ip Ad-

dress of all connected Coupling Master’s and modules.

In the Sample Application “1node_eth.py” the Relay1 will be goes on and off every second.

To exit, press [Ctrl+C] or you click on the x from the window.

For more details about the hardware, see Product Calatogue (search for "Z-CouplingBrick-02",

“P-2Rel4Di2Ai-01”, “CAE_G-8Di8Do-01”).

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 58 of 110

8.1.6.1.2 2nodes_threaded_eth.py

Here we change in the Line 19 the Ip Address from node 1 if your Coupling Masters have a
another Ip Address and the Line 22 for the node 2.

After that we save the changes with “Strg + s” and close the window.

2_nodes_threaded_eth.py

After that we can double click on the .py file and the Sample Application will be started.

Result:

Now the application is started and has read out the Local Master ID, module ID and it´s Ip Ad-

dress of all connected Coupling Master’s and modules.

In “2nodes_threaded_eth.py” we connect the Remote Master with 2 Coupling Master and com-

municated with both simultaneously.

In first node, the one with module P-2Rel4Di2Ai-0#, we read the Analog Input 1 and the four

Digital Inputs out and print them out. And if the Digital Input 1 goes high, the Relay 1 goes on for

Seconds then off again. The same with Digital Input 2 but there goes the Relay 2 on and in 2

Seconds off again.

The second node, the one with module G-8Di8Do-01, there goes all DigitalOutputs high if the

Digital Input 1 is high, else the DigitalOutputs are all low.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 59 of 110

To exit, press [Ctrl+C] or you click on the x from the window.

For more details about the hardware, see Product Calatogue (search for "Z-CouplingBrick-02",

“P-2Rel4Di2Ai-01”, “CAE_G-8Di8Do-01”).

8.1.6.2 Modbus RTU

8.1.6.2.1 1node_rtu

In Line 24, if you have another Port than “COM5” you muss change it in the Port you have.

And in Line 32 you can edit the Modbus Address of your Coupling-Master.

Figure 1 1node_rtu.py Serial

After that we can double click on the .py file and the Sample Application will be started.

Figure 2 Running 1node_rtu.py Modbus RTU

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 60 of 110

Result:

Now the application is started and has read out the Local Master ID, module ID and it´s Ip Ad-

dress of all connected Local Master’s and modules.

In the Sample Application “1node_rtu.py” the Relay1 will be goes on and off every second.

To exit, press [Ctrl+C] or you click on the x from the window.

For more details about the hardware, see Product Calatogue (search for "Z-CouplingBrick-02",

“P-2Rel4Di2Ai-01”, “CAE_G-8Di8Do-01”).

8.1.6.2.2 2nodes_threaded_rtu.py

Figure 3 2nodes_threaded_rtu.py

After that we can double click on the .py file and the Sample Application will be started.

Result:

Now the application is started and has read out the Local Master ID, module ID and it´s Ip Ad-

dress of all connected Coupling Master’s and modules.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 61 of 110

In “2nodes_threaded_eth.py” we connect the Remote Master with 2 Coupling Master and com-

municated with both simultaneously.

In first node, the one with module P-2Rel4Di2Ai-0#, we read the Analog Input 1 and the four

Digital Inputs out and print them out. And if the Digital Input 1 goes high, the Relay 1 goes on for

Seconds then off again. The same with Digital Input 2 but there goes the Relay 2 on and in 2

Seconds off again.

The second node, the one with module G-8Di8Do-01, there goes all DigitalOutputs high if the

Digital Input 1 is high, else the DigitalOutputs are all low.

To exit, press [Ctrl+C] or you click on the x from the window.

For more details about the hardware, see Product Calatogue (search for "Z-CouplingBrick-02",

“P-2Rel4Di2Ai-01”, “CAE_G-8Di8Do-01”).

8.1.6.3 Mobus TCP

8.1.6.3.1 1node_rtu

In Line 22, if your Coupling-Master have a another Ip Address than “192.168.3.10” you should
change it in the correct Ip Address you have. Save the modification with “Strg + s”.

Figure 4 1node_tcp.py Serial

After that we can double click on the .py file and the Sample Application will be started.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 62 of 110

Figure 5 Running 1node_tcp.py Modbus TCP

Result:

Now the application is started and has read out the Local Master ID, module ID and it´s Ip Ad-

dress of all connected Local Master’s and modules.

In the Sample Application “1node_rtu.py” the Relay1 will be goes on and off every second.

To exit, press [Ctrl+C] or you click on the x from the window.

For more details about the hardware, see Product Calatogue (search for "Z-CouplingBrick-02",

“P-2Rel4Di2Ai-01”, “CAE_G-8Di8Do-01”).

8.1.6.3.2 2nodes_threaded_rtu

Figure 6 2nodes_threaded_rtu

After that we can double click on the .py file and the Sample Application will be started.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 63 of 110

Result:

In “2nodes_threaded_rtu.py” we connect the Remote Master with 2 Coupling Master and com-

municated with both simultaneously.

In first node, the one with module P-2Rel4Di2Ai-0#, we read the Analog Input 1 and the four

Digital Inputs out and print them out. And if the Digital Input 1 goes high, the Relay 1 goes on for

Seconds then off again. The same with Digital Input 2 but there goes the Relay 2 on and in 2

Seconds off again.

The second node, the one with module G-8Di8Do-01, there goes all DigitalOutputs high if the

Digital Input 1 is high, else the DigitalOutputs are all low.

To exit, press [Ctrl+C] or you click on the x from the window.

For more details about the hardware, see Product Calatogue (search for "Z-CouplingBrick-02",

“P-2Rel4Di2Ai-01”, “CAE_G-8Di8Do-01”).

8.1.7 Create your own application

This sub chapter describes how create your own application based on the “Sample Application”
descripted above.

Preparation:

 Open the python file
o “default_eth.py” or “default_threaded_eth.py” (for ethernet)
o “default_rtu.py” or “default_threaded_rtu.py” (for Modbus RTU)
o “default_tcp.py” pr “default_threaded_tcp.py” (for Modbus TCP)

 from example folder with the Python Idle with right click on the file and go on “Edit with Idle
and click on “Edit with IDLE 3.9”.

The “default_eth.py” & “default_rtu.py” & “default_tcp.py” works only really with one node, be-
cause we have only one thread for updates and a while loop for the communication and in the
while loop the function order will be called in a row.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 64 of 110

8.1.7.1 “default_eth.py”:

Change in Line 17 the Ip Address if you give your Coupling Master another IP Address.
Add after Line 17 “connect.emBrickPort = ****”, if you want connect with another Port than
7086.
If you want modify the Updaterate, then add before “connect.start_ethernet()”, a Line with “con-
nec.updateRate = 0.1 to change the UpdateCycle (0.1 stands for 100ms).

 Than write your own code after the comment (“Everything is configured. Now you can write
your own Application”)

1. Write the wished Function example “bB.putBit(1, 1, 0, 1, 1)” The meaning of 1, 1, 0, 1, 1
is explained in Chapter 4.7.4.2 IO-Access Functions. The meaning of 1, 1, 0, 1, 1 is ex-
plained in Chapter 8.8.4.2 IO-Access Functions.

2. Save the change with “Strg + s”.
3. Now you can run your Application.

8.1.7.2 “default_rtu.py”:

Change in Line 24 (Windows) or Line 28 (Linux) the COM Port number, if your Modbus Cable
is plugged in another COM Port.
Change in Line 32 the Modbus Address if your Coupling Master have a another.
If you want use another baudrate then 460800 add a Line “connect.baudrate = 57600 (300 –
1000000) after Line 32.
If you want modify the Updaterate, then add before “connect.start ()”, a Line with “connec.up-
dateRate = 0.1 to change the UpdateCycle (0.1 stands for 100ms).
If you add the Line with “connect.timeout = 0.1 (100ms)” before “connec.start(), it will abort the
connection if in the configured time no communication occur between Remote Master and
Coupling Master.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 65 of 110

 Than write your own code after the comment (“Everything is configured. Now you can write
your own Application”)

4. Write the wished Function example “bB.putBit(1, 1, 0, 1, 1)” The meaning of 1, 1, 0, 1, 1
is explained in Chapter 4.7.4.2 IO-Access Functions. The meaning of 1, 1, 0, 1, 1 is ex-
plained in Chapter 8.8.4.2 IO-Access Functions.

5. Save the change with “Strg + s”.
6. Now you can run your Application.

8.1.7.3 “default_tcp.py”:

Change in Line 22 the Ip Address, if you give your Coupling Master another Ip Address
Change in Line 24 the Ip Port, if your Coupling Master configured to another Ip Port.
If you want modify the Updaterate, then add before “connect.start ()”, a Line with “connec.up-
dateRate = 0.1 to change the UpdateCycle (0.1 stands for 100ms)
If you add the Line with “connect.timeout = 0.1 (100ms)” before “connec.start(), it will abort the
connection if in the configured time no communication occur between Remote Master and
Coupling Master

 Than write your own code after the comment (“Everything is configured. Now you can write

your own Application”)

7. Write the wished Function example “bB.putBit(1, 1, 0, 1, 1)” The meaning of 1, 1, 0, 1, 1
is explained in Chapter 8.1.8 IO-Access Functions.

8. Save the change with “Strg + s”.
9. Now you can run your Application.

8.1.8 IO-Access Functions

The data of the I/O slave-modules are organized in a byte buffer for each node (a separate one
of in- and out-data). To access this data, you need to define the ...

node number (here 1-32 node/s),

module number (1...) position of IO-module in the node (emBRICK-string)

offset_position(0...) relative position/offset of the data inside the module image. For de-
tails of each module refer to Product Catalogue, chapter 6.x.x., "pro-
cess data image"

bit_position (0..7) only in case of a bit access, indicates the bit in the selected byte

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 66 of 110

The actual data access is performed by 6 simple functions and that differ in the direction (read-
ing/writing) and the data width (bit, byte, word). Of course also own functions can be developed
to do this.

data reading (from IO-modules to application):

bB.getBit(node, module, offset_pos, bit_pos) return the value of the bit

bB.getByte(node, module, offset_pos) return the value of the byte

bB.getShort (node, module, byte_pos) return the value of the short(word)

writing (from the application to the IO-modules):

bB.putBit(node, module, offset_pos, bit_pos, value) set the bit to given value

bB.putByte(node, module, offset_pos, value) set the byte to given value

bB.putShort (node, module, offset_pos, value) set the short(word) to given value

About their exact parameters and their return value, refer to the comments/description inside the
files ethernet.py, modbus_rtu.py or modbus_tcp, where they are defined and implemented.

Note: Access to the byte buffer is already buffered and secured by mutexes.

8.1.9 The Python Remote-Bus Driver

This driver provides a simple but efficient remote-bus access to the connected emBRICK strings
(string = Coupling-Master + n x I/O-modules), further described as “node” via Ethernet (TCP/IP).

It is written in Python to allow an easy adaption/integration into own code/projects, although it is
possible to create some of the supported code.

8.1.9.1 Features

The driver supports:

 Establishing the connection to the node(s) that is (are) connected to your PC or Raspberry Pi
via Ethernet or via Modbus RTU(RS485) or via Modbus TCP.

 Read the configuration data of each node and its connected bricks

 Read and write I/O-data to each emBRICK node (and its bricks)

8.1.9.2 Mode of operation

Therefore, the actual native SPI update process (local emBRICK Bus) is controlled by the cou-
pling master, the operation via this driver (remote emBRICK bus) contains only a few simply steps.

The actual data exchange is managed via a separate input and output buffer (shared memory).
After the initialisation a permanent triggered process have to be called to execute the update
function. Parallel to this, a set of simple access functions (in Python) allows a synchronized read-
ing/writing access to the I/O-values.

During the initialization the node returns miscellaneous config-data to the driver that are used to
locate the start of each I/O-module in the buffer.

8.1.9.3 Involved File

The Folder “emBRICK” contains the driver.

The driver is built from three files:

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 67 of 110

ethernet.py

In the ethernet.py all functions and modules are declared which parameters the functions need
and they are given back for a communication over Ethernet.

Contains the functions are called from the application.

modbus_rtu.py

In the modbus_rtu.py all functions are declared which parameters the functions need an they are
given back for a communication over Modbus RTU (RS485).

Contains the functions are called from the application.

modbus_tcp.py

In the modbus_rtu.py all functions are declared which parameters the functions need an they are
given back for a communication over Modbus TCP.

Contains the functions are called from the application.

8.1.9.4 Basic implementation

In an own application the following steps have to be implemented:

8.1.9.4.1 Initializing and Starting

Initializing and starting the I/O-update has been split into two function groups

Initialize from driver:

• from emBRICK.ethernet import connect for Ethernet or

• from emBRICK.modbus_rtu import connect for Modbus RTU or

• from emBRICK.modbus_tcp import connect for Modbus TCP.

To import the class emBrickConnection from the installed emBRICK Module. With that we can
configured the connection with the Coupling Master.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 68 of 110

Initialize from driver:

• from emBRICK.ethernet import bB for Ethernet or

• from emBRICK.modbus_rtu import bB for Modbus RTU or

• from emBRICK modbus_tcp import bB for Modbus TCP

To import the class emBrickFunctions. In this are 6 functions for read and write the In- and Outputs
from modules.

b) After initializing, the user can change updateRate. updateRate is for in which periodically you
want to read and write the In- and Outputs.

8.1.9.4.2 IO-Access Functions

The data of the I/O slave-modules are organized in a byte buffer for each node (a separate one
of in- and out-data). To access this data, you need to define the ...

node number (here the number of Local Master’s),

module number (1...) position of IO-module in the node (emBRICK-string)

offset_position(0...) relative position/offset of the data inside the module image. For de-
tails of each module refer to Product Catalogue, chapter 6.x.x., "pro-
cess data image"

bit_position (0..7) only in case of a bit access, indicates the bit in the selected byte

The actual data access is performed by 6 simple functions and that differ in the direction (read-
ing/writing) and the data width (bit, byte, word). Of course, also own functions can be developed
to do this.

data reading (from IO-modules to application):

bB.getBit(node, module, offset_pos, bit_pos)

bB.getByte(node, module, offset_pos)

bB.getShort (node, module, byte_pos)

writing (from the application to the IO-modules):

bB.putBit(node, module, offset_pos, bit_pos, value)

bB.putByte(node, module, offset_pos, value)

bB.putShort (node, module, offset_pos, value)

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 69 of 110

8.2 Python (on Raspberry Pi OS)

8.2.1 Setup the Development Environment

First check with the command "python3 -V” or "python3 –version”.

If a compatible Python software is installed

Figure 7 Python3 Version check

If no Python3.6 or above is installed.

You can install or update Python3 with the following command:

" sudo apt-get install python3" “

Figure 8 Installing of Python3

8.2.2 Installing of the Python Modules

To install the embrick modules we need the tool pip.

To install or update pip enter the following command:

“sudo apt-get install python3-pip”

Figure 9 Installing of PIP

After we have installed pip, we can install or update the required Python modules.

For that we type:

“pip3 install emBRICK”

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 70 of 110

8.2.3 Download and Unzip the Python Sample Application’s

Download the Python Examples with:

“wget https://github.com/IMACS-GmbH/Python/raw/main/examples/examples.zip”

Figure 10 Downloading the Sample Application's

Extract the zip file to you’re a into a new Folder of your choice

“unzip examples.zip”

Figure 11 Unzip of examples.zip

The examples contain the the Example Application. See Chapter8.1.6

8.2.4 Check Hardware

Before starting with the software development, check the hardware by switch on the 24V power
of LWCS board.

https://github.com/IMACS-GmbH/Python/raw/main/Python-starterkit.zip
https://github.com/IMACS-GmbH/Python/raw/main/Python-starterkit.zip
https://github.com/IMACS-GmbH/Python/raw/main/Python-starterkit.zip

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 71 of 110

8.2.4.1 Connection over Lan-Adapter

You can use the build in ethernet port of the Raspberry Pi to control our bricks, but then you can’t
use the port to connect to the internet.

Or you use the build in port for internet and use a USB to ethernet adapter for the communication
with our bricks.

When you use the build in port you don’t need to install a driver.

When you use a USB to ethernet adapter it might be possible that you need to install a driver.

Our USB to ethernet adapter didn’t need a driver. We just plugged it in and checked the usb
devices with “lsusb” for our adapter:

Figure 12 lsusb

Device 005 is our adapter.

Now with “ip a” you can list all ethernet ports with their Ip address.

Figure 13 ifconfig

 You need to set the IP of the ethernet adapter you would like to use to the ip range of
“192.168.3.10” or any other IP you selected with the dip switches or the over the VISU.

To do that login to your pi with putty and change the file “dhcpcd.conf”

sudo nano /etc/dhcpd.conf

sudo nano /etc/dhcpd.conf

Now add the following lines after the last line from the “dhcpcd.conf” file

https://www.putty.org/

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 72 of 110

Ethernetadapter for Bricks

interface eth1

Do not choose the same ip as the Local Master

static ip_address=192.168.3.50/24

static routers=192.168.3.1

static domain_name_servers=192.168.3.1

eth0 is the build in ethernet port and eth1 is the USB to ethernet adapter.

If you want to use the build in port change all eth1 in the upper code to eth0.

Configure the Usb Lan Adapter

Save the changes on the file with “CTRL+X” and then confirm with “Y” and then “Enter”.

8.2.4.2 Connection over Modbus RTU (RS458)

When you use a USB to RS485 adapter it might be possible that you need to install a driver.

If you use our CAE_Z-RaspberryBrick-1#-RB as a master then you need to use the open source
drivers from us. Just follow their tutorial on our Github page to install them.

Now the settings for the COM Port must be made.

If you don’t know where to set these settings then first read chapter 5.5.2.

The COM Port should be “/dev/ttySC0”.

8.2.5 Load and run the Sample Application

If you test all the Sample Application’s you needed following Hardware:

For the Sample Appication’s “1node.py” and “1node_threaded.py” with Ethernet:

 1x Raspberry Pi

 1x Remote Master with the Software Ver. 0.58

 1x P-2Rel4Di2Ai-0# Module ID = 5-131

https://github.com/IMACS-GmbH/emBRICK/tree/main/Hardware%20Products/RaspberryBrick/Driver-SPI2Serial-SC16IS740

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 73 of 110

Figure 14 Raspberry PI connected with 1 Node over Ethernet

For the Sample Appication’s “1node.py” and “1node_threaded.py” with Serial:

 1x Raspberry Pi

 1x RaspberryBrick-RB with the Software Ver. 0.58

 1x P-2Rel4Di2Ai-0# Module ID = 5-131

Figure 15 Raspberry Pi connected with 1 Node over Serial

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 74 of 110

For the Sample Application’s “2node.py” and “2node_threaded.py” with Ethernet:

 1x Raspberry Pi

 Node 1:

 1x Remote Master with the Software Ver. 0.58

 1x P-2Rel4Di2Ai-0# Module ID = 5-131

Node 2:

1x Remote Master with the Software Ver. 0.58

1x P-2Rel4Di2Ai-0# Module ID = 5-131

Figure 16 Raspberry Pi connected with 2 Nodes over Ethernet

For the Sample Application’s “2node.py” and “2node_threaded.py” with Serial:

 Node 1:

 1x Raspberry Pi

 1x RaspberryBrick-RB with the Software Ver. 0.58

 1x P-2Rel4Di2Ai-0# Module ID = 5-131

Node 2:

1x Remote Master with the Software Ver. 0.58

1x P-2Rel4Di2Ai-0# Module ID = 5-131

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 75 of 110

Figure 17 Raspberry Pi connected with 2 Node over Serial

For the Sample Application energie.py:

 Node1:

 1x Raspberry PI

 1x RaspberryBrick-RB with the Software Ver. 0.58

 1x B-3U3I-400-##-RB Module ID: 4-602, 4-603

 2x G-2Mi2Ao-02 Module ID: 2-471

 Node2:

 1x Remote Master with the Software Ver. 0.58

 1x B-3U3I-400-##-RB Module ID: 4-602, 4-603

 2x G-2Mi2Ao-02 Module ID: 2-471

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 76 of 110

Figure 18 To measure of energy

8.2.6 Start and explore the Functionality of "Starter Kit"

Before starting the Sample Application’s, we set the Port by Serial or the Ip Address by Ethernet

8.2.6.1 For Ethernet:

“cd ethernet” To jump in the ethernet folder

Figure 19

“sudo nano 1node.py” To edit the 1node.py, edit the Sample .py which you want to start

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 77 of 110

Figure 20

Figure 21 Edit 1node.py

Change the Ip-Adress if you have a another Ip or add a another Ip-Address if you want connect
another Node additionaly. Press “Strg +x“ then “y“ to save the changes.

Figure 22 Running 1node.py

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 78 of 110

8.2.6.2 Serial

“cd serial” To jump in the serial folder

Figure 23

„sudo nano 1node.py“ To edit the 1node.py, edit the Sample .py which you want to start

Figure 24

Figure 25 Edit 1node.py

Make the line “connect.port = “COM5” to a comment or delete and decomment the Line “# con-
nect.port= “/dev/ttySC0”. Because the Port “/dev/ttySC0” is the preconfigured Port from Raspber-
ryBrick. Press “Strg +x “ then “y“ to save the changes.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 79 of 110

Figure 26 Configured 1node.py

Figure 27 Running 1node.py

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 80 of 110

8.2.7 Create your own application

8.2.7.1 Serial

“cd ethernet” To jump in the ethernet folder

Figure 28

“sudo nano default.py” or without Thread

Figure 29 Edit default.py

Make the line “connect.port = “COM5” to a comment or delete and decomment the Line “# con-
nect.port= “/dev/ttySC0”. Because the Port “/dev/ttySC0” is the preconfigured Port from Raspber-
ryBrick.

“connect.number = 1” change it, if you have more nodes then 1.

And write your own code after the “#### Write your own application ####”

Press “Strg +x “ then “y“ to save the changes.

Hands on Software - with Python

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 81 of 110

“sudo nano default_threaded.py” with Thread

Figure 30 default_threaded.py

Make the line “connect.port = “COM5” to a comment or delete and decomment the Line “# con-
nect.port= “/dev/ttySC0”. Because the Port “/dev/ttySC0” is the preconfigured Port from Raspber-
ryBrick.

“connect.number = 1” change it, if you have more nodes then 1.

And write your own code after the “#### Write your own application ####”

Press “Strg +x “ then “y“ to save the changes.

8.2.8 The Python Remote-Bus Driver

See chapter 8.1.8.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 82 of 110

9 Node-Red

9.1 Setup the Development Environment on Windows

9.1.1 What will be needed

 Node.js

 Node-Red

 A current Internet Browser like Google Chrome, Firefox, …

 Install additional Nodes

9.1.2 Installing Node.js

Download the latest 12.x LTS version of Node.js from the official Node.js home page. It will offer
you the best version for your system.

Run the downloaded MSI file. Installing Node.js requires local administrator rights; if you are not
a local administrator, you will be prompted for an administrator password on install. Accept the
defaults when installing. After installation completes, close any open command prompts and re-
open to ensure new environment variables are picked up.

Once installed, open a command prompt and run the following command to ensure Node.js and
npm are installed correctly.

Using Powershell: node --version; npm --version

Using cmd: node --version && npm --version

You should receive back output that looks similar to:

Figure 31 Node.js & Node-Red Version

9.1.3 Installing Node-Red

Installing Node-RED as a global module adds the command node-red to your system path.

Execute the following at the command prompt:

npm install -g --unsafe-perm node-red

9.1.4 Run Node-Red

Once installed, you are ready to run Node-RED.

https://nodejs.org/en/
https://nodered.org/docs/getting-started/windows#running-on-windows

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 83 of 110

Press the Window Button + R to open the Run Command type in the Window cmd and press
Enter.

Figure 32 Start Command Window

In the new opening Window type node-red and press Enter dann will be Node-Red running.

Figure 33 Starting Node-Red

Open your Internet Browser and type “localhost:1880” and press Enter. The node-red platform
will be loaded.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 84 of 110

Figure 34 Open Node-Red in Internet Browser

9.2 Setup the Development Environment on Raspberry Pi

9.2.1 What will be needed

 Node.js

 Node-Red

 A current Internet Browser

 Install additionally Nodes

9.2.2 Installing Node.js, Node-Red & npm

To install follow the following Step on this Site:

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 85 of 110

https://nodered.org/docs/getting-started/raspberrypi

Figure 35 Starting Scipt to install Node.js, npm & Node-red

Figure 36 After successfull Installtion

9.2.3 Run Node-Red

https://nodered.org/docs/getting-started/raspberrypi
https://nodered.org/docs/getting-started/raspberrypi

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 86 of 110

The install script for the Pi also sets it up to run as a service. This means it can run in the back-
ground and be enabled to automatically start on boot.

The following commands are provided to work with the service:

node-red-start - this starts the Node-RED service and displays its log output. Pressing Ctrl-

C or closing the window does not stop the service; it keeps running in the background

node-red-stop - this stops the Node-RED service

node-red-restart - this stops and restarts the Node-RED service

node-red-log - this displays the log output of the service

You can also start the Node-RED service on the Raspbian Desktop by selecting the Menu ->

Programming -> Node-RED menu option.

After start the Node-Red with the command node-red-start. We go on “localhost:1880” with Inter-
net Browser to open Node-Red.

Figure 37 Starting Node-red

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 87 of 110

Figure 38 Open in Node-red

9.3 Installing of the additionally Nodes

To install the additionally Nodes first click on top right of the Menu icon. Then click on “Palette
verwalten”.

Figure 39 Add additional Nodes to Node-red

Then a right Sidebar will be open. On their click “Installieren” and so we can give in the Search.
Bar the name of the additionally needed Nodes and install them.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 88 of 110

Figure 40 Search a Node

Search for node-red-dashboard and click “Installieren” to install the node. And that we make for
all needed Nodes.

 Node-red-dashboard

 node-red-contrib-config

 red-contrib-embrick

 node-red-contrib-boolean-logic-ultimate

 optionally for connection with modbus: node-red-contrib-modbus

Figure 41 Install a Node

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 89 of 110

9.4 Check Hardware

Before starting with the software development, check the hardware by switch on the 24V power
of LWCS board.

9.4.1 Connection over Lan-Adapter

Start the Application "NetBrick.exe".

NetBRICK is a useful tool that checks all network ports from your PC whether there is a coupling-
master connected with its IP-address. All founded coupling-masters will be listed with their IP
addresses. With NetBRICK you can simply check ...

- if your PC Ethernet-Adapters are correct configured

- if the coupling-master is working and connected/found

- the IP-addresses of the available coupling-master

To start, double click on NetBrick.exe

Figure 42 show's IP Address from Remote Master

In this picture you can see the output of the NetBrick at first all your Ethernet-Adapters are listed
and there after comes the detected coupling-master with the IP 192.168.3.10.

Result: Now you can access the coupling-master and slave-modules.

9.4.1.1 Change Ip-Address

If you want use a another Ip-Address you can change easily with a double click on the config
Node “change updaterate(in ms), ip-address or port.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 90 of 110

Figure 43 edit the Config Node „change updateRate, ip-address or port

Then will be open a right Side Bar with the name “config Node bearbeiten”. Here we can by
flow.host our Ip-Address and after that click on red “Fertig” Button and then on the “deploy” Button.
Now the ip-Address are changed.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 91 of 110

Figure 44 change ip-Address

9.4.2 Add Multiple Remote Master to Project

The Remote Master are writing for a single Flow. If you want to add additional Node, we need to
add a new Flow. For that we click to “Add” Button on the right to add a new Flow.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 92 of 110

Figure 45 Add a new Flow

After that we copy “change updateRate (in ms), ip-address or port” & “BrickBus RemoteMaster
Eth” Node and add them to the new Flow. For that mark the Nodes and press “Strg+c”.

Figure 46 Copy "BrickBus RemoteMaster Eth" & the Config Node

And paste it with “Strg+v” in the new Flow.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 93 of 110

Figure 47 Copy "BrickBus RemoteMaster Eth" & the Config Node

There we only muss change the IP-Address (like in 2.4.3.1.1).

9.4.3 Connection over Serial (RS458)

First check with which Com Port is your Serial Adapter connected.

Figure 48 Geräte-Manager

The USB Serial Port is connected on COM5

9.4.3.1 Change Modbus Port Number

For that we click on the Configuration Button on the right Sidebar. After that double click on the
“modbus-serial@COM5”.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 94 of 110

Figure 49 Konfigurationsmenü

There we can manually change the by Com-Port our Port or we click on search Button then will
popped up the possible Port’s. There we can choice the right one and save it with a click on
“aktualisieren” then “deploy”.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 95 of 110

Figure 50 change Modbus Com-Port

9.5 Load and run the Sample Applications

For the Sample Application you needed following Hardware:

1. Remote Master with the Software Ver. 0.55

The Sample Applications can be loaded separately when you don’t have one of these Modules

2. G-8Di8Do-01 Module ID = 2-181

3. P-2Rel4Di2Ai-01 Module ID = 5-131

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 96 of 110

4. G-2Mi2Ao-02 Module ID = 2-472

To load the Examples, we click in Node Red at the Menu Button in the Top Right then on Import.

Figure 51 Open Import Window

It will open a new window there we click on the left on “Beispiele” then on file red-contrib-embrick.
Then you can load the Example you want.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 97 of 110

Figure 52 Add a Sample Application

If you have all three Bricks for the example you can take eB-SampleMain to load the full Sample
Application and click then on Import.

When you have only one of the Brick Modules you can easily take the one you have to load a
Sample Application of the Module.

9.6 Start and explore the Functionality of emBrick Nodes

You can find our embrick Nodes after Installation in Left Sidebar. You can easily search in Search
Bar for the exactly node you want or scroll down to embrick there you can find our all nodes.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 98 of 110

Figure 53 Find our Nodes

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 99 of 110

9.6.1 Digital Input

Figure 54 Digital Input

With the Digital Input Node, you can show the State of a Digital Input from your Brick.
To configure the Node, we DoubleClick on the Node and the Node Edit Window will be open.

Figure 55 Digital Input Edit

1. Name: Here you can change the Name of the Node to have a better Overview on your

Project.
2. Topic: This can let be empty is irrelevant for us.
3. Brick: Here type the Brick Nr. from which you want read the Digital Input. The Brick Number

begins from 0 also the first Brick is 0.
4. BytePos: Here type the Byte Position in which the Digital Input is placed. The first Byte

Position is 1, because on the 0 is the Status of the Brick.
5. BitPos: Here type which Digital Input you want to read. Digital Input goes from 0 to 7. The

first Digital Input is on 0.
6. Entpreller: Is the Debounce function. The Debounce can be placed from 0 to 10000 milli-

seconds. Entpreller means when the Input is for the placed milliseconds 1, then it gives a
1 back. Otherwise, it gives a 0 back.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 100 of 110

9.6.2 Digital Output

Figure 56 Digital Output

With the Digital Output Node, you can place the State of a Digital Output from your Brick to 1 or
0.
To configure the Node, we DoubleClick on the Node and the Node Edit Window will be open.

Figure 57 Digital Output Edit

1. Name: Here you can change the Name of the Node to have a better Overview on your
Project.

2. Topic: This can let be empty is irrelevant for us.
3. Brick: Here type the Brick Nr. from which you want placed the Digital Output. The Brick

Number begins from 0 also the first Brick is 0.
4. BytePos: Here type the Byte Position in which the Digital Output is placed. The first Byte

Position is 0.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 101 of 110

5. BitPos: Here type which Digital Output you want to place the state. Digital Output goes from
0 to 7. The first Digital Output is on 0.

9.6.3 Analog Input

Figure 58 Analog Input

With the Analog Input Node, you can show the current State of the Analog Input from your Brick.
To configure the Node, we DoubleClick on the Node and the Node Edit Window will be open.

Figure 59 Analog Input

1. Name: Here you can change the Name of the Node to have a better Overview on your

Project.
2. Topic: This can let be empty is irrelevant for us.
3. Brick: Here type the Brick Nr. from which you want read the Anaglo Input. The Brick Number

begins from 0 also the first Brick is 0
4. BytePos: Here type the Byte Position in which the Analog Input is placed. The first Byte

Position is 1, because on the 0 is the Status of the Brick

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 102 of 110

5. Gleitender Mittelwert: Calculate the Mean of the Input Values. You can type a number be-
tween 0 and 100.

6. Messagehystere: Change the Input Value only when it is bigger or smaller than the given
value. Value can be placed from 0 to 10.

7. Input Digit Value Lower: Type here lower Digit Value which can be different for every Analog
Input.

8. Input Digit Value Upper: Type here upper Digit Value which can be different for every An-
alog Input.

9. Process Unit: Here you can type the Process Unit of the Input, like mA, V or %.
10. Input Process Value Lower: Type here the lower Process Value.
11. Input Process Value Upper: Type here the upper Process Value.

9.6.4 Analog Output

Figure 60 Analog Output

With the Digital Output Node, you can placed the State of a Digital Output from your Brick to 1 or
0.
To configure the Node, we DoubleClick on the Node and the Node Edit Window will be open.

Figure 61 Analog Output Edit

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 103 of 110

1. Name: Here you can change the Name of the Node to have a better Overview on your
Project.

2. Topic: This can let be empty is irrelevant for us.
3. Brick: Here type the Brick Nr. from which you want read the Anaglo Input. The Brick Number

begins from 0 also the first Brick is 0
4. BytePos: Here type the Byte Position in which the Analog Output will write. The first Byte

Position is 0.
5. Output Digit Value Lower: Type here lower Digit Value which can be different for every

Analog Output.
6. Output Digit Value Upper: Type here upper Digit Value which can be different for every

Analog Output.
7. Process Unit: Here you can type the Process Unit of the Input, like mA, V or %.
8. Output Process Value Lower: Type here the lower Process Value.
9. Output Process Value Upper: Type here the upper Process Value.

9.6.5 Digital Vis

Figure 62 Digital Vis

Show the Digital Input or Output in a Dashboard with the name you can modify in the Configura-
tion and the current state (yellow circle for 1 & black circle for 0).

Figure 63 Digital Vis Edit

Group: This Field is required. Here you select or create the Site on the Dashboard. The Dash-
board you can reach when you type “localhost:1880/ui” in the Internet Browser.

Size: configured the Size of the Node on the Dashboard.

Name: Here you can change the Name of the Node. The name you will give will show in the Node-
Red Site and on Dashboard.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 104 of 110

Figure 64 Digital Vis on Dashboard

This is the Main Dashboard Page of the Example Application. Like you see in the Browser, we
type localhost:1880/ui and press Enter

In the eB-Sample1-1 shown the Digital Vis in Dashboard. First stand the Name of the Node then
the current State. They are current black (0).

9.6.6 Analog Vis

Figure 65 Analog Vis

Show the Analog Input or Output in a Dashboard with the name you can modify in the Configura-
tion and the current state if you give in the Analog Input or Output the Process unit and the lower
upper Process values. It will show the current Value in the given Process Unit, if not it will give
the current value in Digits.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 105 of 110

Figure 66 Analog Vis Edit

Group: This Field is required. Here you select or create the Site on the Dashboard. The Dash-
board you can reach when you type “localhost:1880/ui” in the Internet Browser.

Size: configured the Size of the Node on the Dashboard.

Name: Here you can change the Name of the Node. The name you will given will shown in the
Node-Red Site and on Dashboard.

Figure 67 Analog Vis on Dashboard

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 106 of 110

9.6.7 Digital Force

Figure 68 Digital Force

The Digital Force Node give you the opportunity to force the Input or Output to 1 or 0. It’s a big
help by Debug or Test something.

Figure 69 Digital Force Edit

Group: This Field is required. Here you select or create the Site on the Dashboard. The Dash-
board you can reach when you type “localhost:1880/ui” in the Internet Browser.

Size: configured the Size of the Node on the Dashboard.

Name: Here you can change the Name of the Node. The name you will give will show in the Node-
Red Site and on Dashboard.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 107 of 110

Figure 70 Digital Vis on Dashboard

9.6.8 Analog Force

Figure 71 Analog Force

The Analog Force Node give you the opportunity to force the Input or Output to the input value.
It’s a big help by Debug or Test something.

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 108 of 110

Figure 72 Analog Force Edit

Group: This Field is required. Here you select or create the Site on the Dashboard. The Dash-
board you can reach when you type “localhost:1880/ui” in the Internet Browser.

Size: configured the Size of the Node on the Dashboard.

Name: Here you can change the Name of the Node. The name you will give will show in the Node-
Red Site and on Dashboard.

Figure 73 Analog Force on Dashboard

Node-Red

Starter Kit - Remote-Bus all information for reference only - technical changes reserved - rev. 14 Page 109 of 110

9.7 Create your own application

To create your own Application, start the Node-Red and delete the Sample Application. Then
import the “BrickBus RemoteMaster Ethernet” or “BrickBus RemoteMaster Modbus” which you
prefer to connect with the Remote Master from Example Folder.

After that configure the “Config Node” with the Remote Master Ip-Address or Modbus Port.

Now we are ready to create your own application.
You can drag drop our Embrick Nodes to read a Digital Input or write an Analog Output.

