

7

Programmers Manual
Rev. 12

emBRICK® - EPC
Embedded Patch-board Controller

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 1 of 62

emBRICK® is developed and supported by

IMACS GmbH

Alfred-Nobel-Straße 2

D – 55411 Bingen am Rhein
www.imacs-gmbh.com

www.embrick.de

support@embrick.de

Hotline: +49 (0) 7154 80 83 - 15

IMACS GmbH reserves the right to make changes without further notice to any products herein.

IMACS GmbH makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does IMACS GmbH assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including without limita-

tion consequential or incidental damages. “Typical” parameters which may be provided in IMACS

GmbH data sheets and/or specifications can and do vary in different applications and actual perfor-

mance may vary over time. All operating parameters, including “Typicals” must be validated for each

customer application by customer’s technical experts. IMACS GmbH does not convey any license

under its patent rights nor the rights of others.

copyright © IMACS GmbH 2022. All rights reserved.

Reproduction, in part or whole, without the prior written consent of IMACS GmbH is prohibited.

http://www.imacs-gmbh.com/
http://www.embrick.de/
mailto:support@embrick.de

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 2 of 62

Content

1. The emBRICK® Mission ... 5

1.1 Typical Applications... 5

1.2 Basic Characteristics ... 6

1.3 Available Hardware Products.. 6

1.4 Available Host Platforms, Connectivity .. 6

1.5 Available Programming Platforms ... 6

2. Introduction ... 7

2.1 About this Manual .. 7

2.2 References / Manual Overview ... 7

3. Overview ... 8

3.1 Currently supported Programming Methodes/Languages ... 8

3.2 Currently supported Targets / Plattforms .. 9

4. Basic Information ... 10

4.1 Ways of Adaption ... 10

4.2 Ways of Programming ... 10

4.3 I/O-Addressing ... 11

4.4 Bus Protocol - Versions and Compatibility .. 11

4.4.1 History – Local Bus Protocol ... 11
4.4.2 How to get the protocol version of my Local Bus? ... 11

4.4.3 Remote Bus Protocol .. 11

5. Local-Bus Communication/Access .. 12

6. Remote-Bus Communication/Access .. 13

6.1 .. 13

6.2 Features of Coupling Masters ... 13

6.2.1 LEDs, Status Indication ... 13

6.2.2 Errors ... 13
6.2.3 Timing .. 14
6.2.4 Synchronous vs. Asynchronous brickBUS .. 14
6.2.5 PC-Visualization .. 14

6.2.6 Plugin “LAN ... 20

6.2.7 Plugin "CAN" .. 20

6.2.8 Plugin "Modbus Large Block" ... 20
6.2.9 Plugin "Modbus Nativ" (planned) ... 21
6.2.10 Plugin “Local Application” (on demand) ... 21
6.2.11 Software History and internal repository .. 21

6.3 LAN/RSxxx Communications .. 22

6.3.1 Basics .. 22
6.3.2 Remote Bus Protocol Definition V4 ... 23
6.3.3 Data Transportation .. 28

6.3.4 Error detection and handling .. 29
6.3.5 Protocol History .. 30

6.4 CAN based remote communication (planned) .. 32

6.4.1 Basics .. 32
6.4.2 Mode of Operation .. 33
6.4.3 Description of Operation .. 33

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 3 of 62

6.4.4 Example of a Configuration Message ... 36

6.4.5 Examples of a Data Message .. 37
6.4.6 Examples of a Command/Status Message .. 39
6.4.7 Error detection and handling .. 39
6.4.8 Protocol History .. 39

6.5 ModBUS Large Block ... 40

6.5.1 Data representation .. 40
6.5.2 Supported commands .. 41
6.5.3 Restrictions ... 42

6.5.4 Data Transportation .. 42
6.5.5 Error detection and handling .. 43
6.5.6 Protocol History .. 45

6.6 Modbus Nativ (further feature) ... 46

6.6.1 .. 46
6.6.2 .. 46

6.6.3 .. 46
6.6.4 .. 46
6.6.5 .. 46
6.6.6 .. 46

6.6.7 .. 46
6.6.8 .. 46

6.6.9 .. 46

7. Local Bus Access Programming ... 47

7.1 Using C/C++ via Raspberry Pi (Raspian, Geany) .. 47

7.2 Using C/C++ via BeagleBoneBlack (Angstrom) ... 47

7.3 Using Model-based/C/C++ via radCASE .. 48

7.3.1 radCASE-Assign-Strings ... 48

7.3.2 Setting Outputs ... 49
7.3.3 Flowmeter ... 49

7.4 Using IEC61131 via CODESYS .. 50

7.5 Using Midddleware based via Gamma ... 51

8. Remote Bus Access Programming ... 52

8.1 Using native C/C++ Programing (i.e. via MSVC) ... 52

8.2 Model-based/C/C++ with radCASE (IMACS GmbH) ... 52

8.2.1 Basics .. 52
8.2.2 Handling .. 52

8.3 Middleware Gamma (RST GmbH) .. 55

8.4 Modelbased Programing with eTrice (PROTOS GmbH) ... 55

8.5 IEC61131 Soft-PLC with logi.CAD3 (logi.cals) ... 55

8.6 IEC61499 Soft PLC with 4diac (fortiss GmbH) .. 55

8.7 IEC61131Soft-PLC with CODESYS (3S GmbH) .. 55

8.7.1 Create your own brick description ... 55

8.8 Phyton ... 58

8.9 Node-RED .. 58

8.10 Labview ... 58

8.11 .. 58

8.11.1 .. 58
8.11.2 .. 58
8.11.3 .. 58

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 4 of 62

9. Troubleshooting ... 59

9.1 Slavemodul state LED .. 59

9.2 Local Mode Operation ... 60

9.2.1 Check-List .. 60
9.2.2 radCASE Project .. 60
9.2.3 BeagleboneBrick/RaspberryBrick Projects ... 60

9.3 Remote Mode Operation ... 61

9.3.1 Log file ... 61

The emBRICK® Mission

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 5 of 62

possible Target I/Os, based on a String of bricks

Remote-Masters + Couplers

possible

Local-Masters

other Strings of bricks (for bigger Systems)

1. The emBRICK® Mission
The mission of emBRICK® is an open and free I/O system to ...

build compact and industrial suited electronic control systems

by assembling small existing/own embedded boards (bricks) ...

... via a SPI-based local interface and optional remote buses (LAN, WLAN, CAN, RSxxx, ...).

We call this new class of controllers simple EPC (= Embedded Patch-board Controller).

emBRICK® combines in a perfect way the cost-efficient and tailored characteristics of a dedi-

cated embedded system with the ready to use and flexibility of a PLC system.

To ensure a high acceptance, it is an open and free system. I.e. besides buying existing devices,

everyone can develop his own components to realize easily his individually tailored,

cost-efficient and industrial-suited measure and control system.

1.1 Typical Applications

▪ Small, medium and large size measure and control systems

▪ Sectoral purpose, with direct sensor/actor interface

▪ Autonomous single box control solutions i.e. with HMI and communication interfaces

▪ Rapid hardware prototyping system for control and measuring applications

▪ PLC replacement (i.e. with a Soft-PLC, IPC or an embedded controller)

▪ Medium and large size distributed IO-systems (i.e. building automation)

▪ Physical front-end for IoT (Internet of Things)

For more details see Product_Catalogue and Application_Manual.

The emBRICK® Mission

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 6 of 62

1.2 Basic Characteristics

▪ free - also for commercial use in own appliances (for pure EMS with a license fee)

▪ open - supplying reference schematics, protocol source code, samples and starter kits

▪ adaptable to all systems, using common, low cost standard µCs/components

▪ half ... third price compared to common control systems (complete system view)

▪ scalable local and remote topologies, 1 ... >1000 I/Os, up to 1ms update, deterministic

▪ low own power consumption, average 50mW/slave module in operation (outputs inactive)

▪ global and sector specific modules for direct connection of various sensors and actors

▪ easy installation, no configuration necessary, simple plug modules together and use

▪ works with / programmable by various established, well known platforms / languages

1.3 Available Hardware Products

Beside own developments, currently the following components are available from IMACS:

Slave-Modules > 50 different modules for the sectors: General Purpose, Building

Automation, Process Control (Safety, Medical/Analytics planed)

Master boards Core: Cortex-M3/4, ARM9/11, PIC24/32; HMI: 128x64 ... WVGA

Adaption boards for LAN, WLAN, CAN, RSxxx, Raspberry Pi, Beaglebone Black

Appliances / Enclosures ready Single Box Controller for and top-hat rail and wall mounting

Starterkits for MSVC, CODESYS, Raspberry Pi, Beaglebone Black

1.4 Available Host Platforms, Connectivity

emBRICK® can be adapted to all platforms with almost every footprint/performance. For mas-

ter units, currently the following system implementations are available (others planed):

Computer platforms PC, Embedded-PC, Module-PC, Raspberry Pi, Beaglebone Black

µController platforms ARM-Ax, ARM-Cortex-Mx, Microchip PIC24 / PIC32

Host Interfaces Ethernet, CAN, RS232, RS485

Wireless Interfaces WLAN

1.5 Available Programming Platforms

emBRICK® can be programmed by various systems, languages and IDEs (integrated develop-

ment interface). Currently for master units the following systems are available (others planed):

OS / RTOS Windows, Linux, FreeRTOS, proprietary

Programming languages C, C++, IEC61131, Model-based (by implementing UML)

Model-based / Soft-PLC CODESYS, radCASE, Enterprise Architect

C/C++ IDEs............................. MSVC, Cocox (GCC), MPLab (Microchip), Geany (Raspberry Pi),

every other C/C++ IDE

Introduction

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 7 of 62

2. Introduction

2.1 About this Manual

This manual describes the current available programming methods/languages and their host

platforms to having access to emBRICK® components. It is addressed to application develop-

ers, who want to use existing development environments or will access the strings direct via a

Coupler and the Remote-Bus.

For developers who wants to create own components or low-level driver (i.e. master adaption)

please refer to the developers manual.

2.2 References / Manual Overview

For emBRICK® and brickBUS® the following documents are available. Before reading this doc-

ument, it is recommended to read them in the given order:

System Manual(embrick_System-Manual_#.pdf) ... the basic system manual that

contains the idea, the intention and the basic technical concept of

emBRICK®/ brickBUS® like mechanics, electronics and communi-

cation protocol. It includes the glossary for all other documents.

Application Examples (emBRICK_Application-Examples_#.pdf) ... overview of typical em-

BRICK® device configurations and sample constellations for dif-

ferent industrial applications. It gives an idea how to use em-

BRICK® as an alternative to a normal PLC or an individual PCB /

embedded system.

Product Catalogue (emBRICK_Product-Catalogue_#.pdf) ... contains the overviews and

detailed datasheets of all IMACS-available emBRICK® components

and products. This includes electrical and mechanical characteris-

tics, terminal assignment and notes about their usage.

Programmers Manual (emBRICK_Programmers-Manual_#.pdf) ... is the manual for appli-

cation software programmers when using established programing

systems like Embedded-IDEs, Soft-PLCs, CASE-Tools but also na-

tive C/C++-coding.

FAQ Manual (emBRICK_FAQ-Manual_#.pdf) ... contains answers to the most

frequently asked questions about emBRICK® and its usage.

Developers Manual is the manual for system developers, who like to create their own

slave modules or master adaptions. It includes all technical details

specifications of brickBUS® and also sample schematics and code

samples of the software stacks. This document is only available

on request from IMACS GmbH and needs the agreement on the

emBRICK® free license conditions. Please contact sup-

port@embrick.de.

http://embrick.de/downloads/dokumente/eB_System.pdf
http://embrick.de/downloads/dokumente/eB_Applications.pdf
http://embrick.de/downloads/dokumente/eB_Products.pdf
http://embrick.de/downloads/dokumente/eB_Programmer.pdf
http://embrick.de/downloads/dokumente/eB_FAQs.pdf
mailto:support@embrick.de
mailto:support@embrick.de

Overview

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 8 of 62

3. Overview

3.1 Currently supported Programming Methodes/Languages

Gray = planed / on request (please contact us)

 Product
(Company)

Language OS

Platt-
form

IDE

VisualStudio
(Microsoft)

C, C++,
C#

Windows (E)PC

radCASE
(IMACS)

UML, C/C++
Signal-Chart

all all

Enterprise Architect
(Sparxs Systems)

UML all all

eTRICE
(Protos)

ROOM all all

CODESYS
(3S)

IEC61131 Windows

(E)PC

4DIAC

IEC61499 all all

 logi.cad
(logi.cals)

 all all

 Labview Windows (E)PC

Overview

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 9 of 62

3.2 Currently supported Targets / Plattforms

Gray = planed / on request (please contact us)

Coupling: L = Local, direct via brickBUS

R = Remote, by coupling device via Ethernet, CAN, Modbus, RSxxx, etc.

 Product
(Company)

 OS

Cou-
pling

IDE

Raspberry Pi LInux L, R

Beaglbone
(TI)

 Linux L, R

 Arduino

 ARM Cortex M3/M4/M7 FreeRTOS L

 ARM 9/11 LINUX R

 Mircochip PIC24/32 none, FreeRTOS L

Basic Information

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 10 of 62

4. Basic Information
Note: For understanding the following content it is necessary to be familiar with the

principles of emBRICK® and the different adaption methods "local" and "re-
mote". Please refer to the System Manual.

4.1 Ways of Adaption

The access to the emBRICK® components can be executed (according the individual project

size/requirements) by two possible adaption methods: Either via the...

1) Local-Bus (= brickBUS®) direct, i.e. an enhanced SPI or by bit-banging or the controller

2) Remote-Bus by using a bus-coupler (currently the CAE_Z-LWCS-M32-0#) and the (currently

available) interfaces LAN, WLAN, CAN or RS485

4.2 Ways of Programming

For both adaption methods (Local/Remote) the programing can be done...

a) Native, by using the protocol description and develop own low-level drivers/hosts (see chap-
ter 5, 6) or

b) Template-based, by using an existing implementation with drivers, prepared for different

platforms and development environments (see chapter 7, 8).

For template-based working, the following platforms with corresponding templates and drivers

are available (grey = under development / planed):

Adapt. Language Hardware, Platform OS IDE

Local C, C++, UML PIC24/32,
ARMx
Cortex-Mx, AX

proprietary
Free-RTOS
Linux

div. GNU (coocox, ...)
MPLAB X
radCASE, Enterprise Architect

Local C, C++ Raspberry PI Linux Geany

Local IEC61131-3 Raspberry PI Linux CODESYS

Local Pyton, Java Raspberry PI Linux

Local C, C++ Beagle Bone Black Linux, Gamma Geany

Remote C, C++ PC, IPC, emb. PC Windows, Gamma MSVC

Remote C, C++, UML PC, IPC, emb. PC Windows radCASE, Enterprise Architect

Remote IEC61131-3 PC, IPC, emb. PC Windows CODESYS

Remote proprietary Measuring Systems Labview

Remote proprietary Building Automation
Systems, DDC-GA

 FHEM, myGEKKO, SYMCON

Basic Information

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 11 of 62

4.3 I/O-Addressing

To address an I/O on the different strings/modules, the following information is necessary:

- node-ID (string-ID), if multiple strings 1...x (only for remote bus systems)

- module-number (inside the string) 1...32

- byte-offset (inside the module) 0...x (see module data sheet)

- bit-number (inside the Byte), if Bit-I/O 0...7 (see module data sheet)

The discrete implementation depends on the chosen adaption methode or programming lan-

guage / developing environment.

4.4 Bus Protocol - Versions and Compatibility

4.4.1 History – Local Bus Protocol

Version Description Features/Bugfixes

11 Basic Release first official serial version

2 Enchantement Enhanced checksum

Currently Local Bus Protocol version 2 is the actual version.
We are currently delivering emBrick Products with the enhancement 2

4.4.2 How to get the protocol version of my Local Bus?

The brick modules transfer their protocol version to the local master during initialization. Most
application programs show this protocol version number in their brick analysis screen. Contact
the supplier of your application or the supplier of the brickBUS stack used for further details.
For bridge modules, the analysis screen shows the protocol version of every slave module.

The standard brickBUS Stack implementation (used e.a. in the bridge modules) checks the pro-
tocol version of every brick during initialization. In case the brickBUS stack does not support the
protocol version of one brick, the brickBUS is halted and an error notification is generated.

4.4.3 Remote Bus Protocol

For details see chapter 6 below to learn about the protocol version history and how the Remote
Bus protocol version is transmitted to the remote master. Contact the supplier of the Remote
Master how this version can be seen.

Local-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 12 of 62

5. Local-Bus Communication/Access
For details, refer to the Developer Manual

This can be requested for free at support@embrick.de

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 13 of 62

6. Remote-Bus Communication/Access
Remote bus access offers the possibility to connect emBRICK® components (i.e. I/O-modules)

to a master, that does not support the brickBUS® (= the emBRICK® Local-Bus based on SPI)

directly.

To do this, a coupling master hardware is used to "convert" standardized communications

(TCP/IP, Modbus, CAN, …) to the local brickBUS®.

Ready available coupling master device are:

- CAE_Z-CouplingBrick_# (EOL, not for new projects)

- CAE_Z-PatBridgeMX-11 (open frame)

- CAE_Z-UniBridgeMX-1#-RB (DIN Rail enclosure)

These devices connect to the remote brickBUS master device via LAN, WLAN, CAN, RSxxx etc to

the local brickBUS.

6.2 Features of Coupling Masters

Note: The following description refers to the newest software version (see 6.2.11).

6.2.1 LEDs, Status Indication

LED2 green:
Local Bus Indicator Flashing (approx.. 5Hz) : Local Bus is configurating, at start or

after failiure.
 ... Flashing (approx.. 1Hz) : Local Bus is operating.
LED1 orange:
Network configuration Off : Not in network configuration mode and no error pending

Flashing (approx.. 1Hz) : Network configuration, searching ad-
dress from DHCP.
Permanently on : in network configuration mode, connected.

Error notification Off : Not in network configuration mode and no error pending

Morse code (5 bit, 0.5 sec = 1 / 0.2 sec = 0, Pause 5 sec) : an
error is pending (see below).

LED3 yellow:
Remote Bus indicator Off : No connection to remote master
 ... On : Remote master connected and sending

Flashing (approx. 1Hz) Connection to remote master is estab-
lished, but no data is sent (timeout).

6.2.2 Errors

Some errors make the LED1 (orange) send an error code repeated every 5 seconds. These er-
rors will occur immediately after power on. The codes mean the following:

0x000: remanent data storage corrupteds or defective
0x001 .. 0x004: remanent parameter area corrupted

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 14 of 62

0x005 .. 0x008: remanent system parameter area corrupted
0x009 .. 0x00C: remanent calibration data area (most times unused) corrupted
0x00D .. 0x010: remanent process data area corrupted
0x011 .. 0x014: REMA data area corrupted
0x01F: internal program error which can not be repaired

The different numbers of certain errors are for use by embrick support to identify the error more
specifically.

If such an error occurs, the program is halted. To continue, press the Config button.
CAUTION: Pressing the Config Button in this case sets the corrupted area back to factory de-
fault values! Therefore, the device will then enter the Configuration mode and the configuration
must be checked and eventually updated / corrected.
If the error persists even after the configuration has been updated or in case of error code 0x1F
please contact support@embrick.com.

6.2.3 Timing

The timing depends on several conditions. Generally, the time between 2 consecutive
send/receive cycles consists of 3 parts:
- The time required for transmission of the data via the physical data layer
- The Latency of the LWCS software
- The Latency of the Host software

The data transmission via RS485 runs with typically 1 M Baud (further possible: 9600 … 1M
Baud), therefore the transmission time of a 250 Byte (max. length) data block is 2.5 ms and ap-
prox. 0.1 ms for a simple request. The transmission time via Ethernet is highly dependant on the
load of the Ethernet connection, but typically it is < 1ms.

The LWCS Software has a latency of up to 2 ms for LAN communication and up to 10 ms for
ModBUS Large Block communication.

Totally, you can calculate with a time of 3ms + Latency of the host in case of the LAN commu-
nication via Ethernet and <= 13 ms + Latency of the host in case of the ModBUS Large Block
RTU communication.

6.2.4 Synchronous vs. Asynchronous brickBUS

The local bus (= brickBUS®) can be operated in asynchronous mode (the bus is permanently

updated) or in synchronous mode (the update is triggered by an event).

In synchronous mode every time a data exchange request (0x10h) is received a brick-

BUS-update cycle is triggered. The update is also triggered if for 40 ms no data exchange re-

quest is received.

If the localmaster application software itself manipulates the IO’s on the bricks, the brickBUS

must be operated in asynchronous mode in order to make these local updates effective.

For programming details see documentation in the brickBUS stack code.

6.2.5 PC-Visualization

The coupling master application is used to start a new project with the LWCS, uniBridge or Pat-

Bridge. This means you can connect your coupling master (LWCS, uniBridge or PatBridge) via

mailto:support@embrick.com

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 15 of 62

Ethernet with your computer and start the visualization. There are two types of visualization, the

first one is a webpage, which opens in any browser on your computer under the IP address of

the coupling master set with the DIP switches, see below. The other version is a standalone

version which is coupled with the firmware version installed on the coupling brick. If you use the

web visualization, you will see all nessessary information of the coupling brick and you can set

e.g. the communication channel and change the IP address. If you use the standalone version,

you additionally will see all information about the brickBUS which can the coupling master read

from it.

6.2.5.1 Switching IP Address

On all coupling master exists two options of changing the current IP-Address.

- Changing the IP-Address with the PC-visualization (see 6.2.5.4.1 or 6.2.5.3.2)

- Changing the IP-Address with the on-board DIP-switches (see 6.2.5.2)

You must change the IP-Address of your coupling master, if you will use more than one coupling

master in your network.

6.2.5.2 Switching IP Adress with DIP-switch

The DIP-switch position determines a value between 0...15 as: Sw1 + Sw2 x2 + Sw3 x4 + Sw4

x8.

The standard position of the onboard DIP-switch is “1000” (DIP Switch value 8). In this case the

IP 192.168.3.10 is set to your coupling master.

Usage during power on:
DIP switch value 0: use DHCP
DIP switch value 1: …………… IP-address set in the Visualisation
DIP switch value 2 - 7: unused
DIP switch value 8 ... 15: determines fix IP-address (192.168.3.10 ... 17)

Here is a list of the switch positions and the resulting IP-addresses:

Switch-positions DIP-switches value in the VIS IP-Address

0000 0 DHCP

0001 1 Software set Adress

1000 8 192.168.3.10

1001 9 192.168.3.11

1010 10 192.168.3.12

1011 11 192.168.3.13

1100 12 192.168.3.14

1101 13 192.168.3.15

1110 14 192.168.3.16

1111 15 192.168.3.17

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 16 of 62

Please note :

1. When setting the DIP-Switches to “DHCP” you need a possibility to get the actual IP address

of the coupling master. Tools for this purpose are available from different suppliers.

2. When setting the DIP-Switches to “Software set Adress”, the shipped value of the IP address

is 192.168.1.0

6.2.5.3 Web visualization

Our newest coupling bricks (patBridge, uniBridge) with preinstalled firmware versions V0.53 and

later have an integrated web visualization where you can set main configuration settings of the

communication between coupling brick and remote master.

To open the web visualization, you must connect your coupling brick via an ethernet cable with

your computer (your ethernet port (TCP / IPv4 protocoll) must be set to 192.168.3.1). After

connecting your coupling brick with your computer and correctly setting the TCP / IPv4 proto-

col, you can open the visualization on any browser under the IP address 192.168.3.10 (standard

IP address after shipping, also with any IP addresses you´ll set). When the visualization is load-

ed, you will see an overview of your coupling brick with the following informations:

- Hardware-Version

- Firmware-Version

- Master communication channel

- brickBUS synchronous to Master (see Fehler! Verweisquelle konnte nicht gefunden wer-

den.)

- and remote timeout

6.2.5.3.1 Overview

In this overview you can set the communication channel, which will be used for your application.

You can choose between LAN/WLAN or ModbusLB (Modbus Largeblock). If the master com-

munication channel Is set to “Inactive”, you won’t communicate with any remote master, so you

must set this value either to LAN/WLAN or ModbusLB.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 17 of 62

With the value “brickBUS synch. To Master” you can set how the brickBUS will be updatet with

incoming data. “No” means, the brickBUS will be updated continguosly and “Yes” means, the

Bricks will wait for a startsignal from the RemoteMaster and start after this signal the local

communication. This can be helpful if you will send big sized packages

With the remote timeout you will set the time which the coupling master will wait till it sends a

request to the connected devices on the brickBUS. In this case, all Outputs are set to 0.

6.2.5.3.2 Network settings

In the Network settings you will see the used MAC-address and you can change the IP settings

of your coupling brick. Before doing this, set the DIP-switches to “0001”. If you don´t set them to

the position “0001”, the IP Adress of the DIP-switch is set. You can reboot the system by click-

ing on the onboard reset button.

6.2.5.3.3 ModBUS Settings

In the ModBUS settings you will see all nessessary settings used for ModBUS. You can change

the ModBUS communication between “Modbus RTU” and “Modbus TCP/IP”. You can turn

ModBUS on or off, set your ModBUS address and the ModBUS timeout.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 18 of 62

6.2.5.3.4 Future planning

▪ Configuration of:
o Baudrate-RSxxx, Com-Parameter-RSxxx
o Baudrate-CAN, Adress-CAN

▪ eB_Overview
▪ setting of behavior by failure of the remote bus

6.2.5.4 Visualization Overview (standalone version)

This is the start window of your visualisation. It shows:

- The installed software version on your coupling master

- The current System Time and Date

- The Value set with the DIP switches

- The state of the remote access. You can turn on / off the remote access between the cou-

pling master and a RemoteMaster (PC)

- You can switch the synchronization between the RemoteMaster and the coupling master

o Normal synchronization of the local BrickBUS is asynchrounus

o If the synchronization is set to synchronous, the Bricks will wait for a startsignal

from the RemoteMaster and starts after this signal the local communication. This

can be helpful if you will send big sized packages

- With the remote timeout you will set the time which the coupling master will wait till it sends

a request to the connected devices on the brickBUS. In this case, all Outputs are set to 0.

6.2.5.4.1 Switching IP Address with PC-visualization

When you connect the coupling master with the PC-visualization, you can click on the Button

“Ethernet”. The following window will open (window varies slightly depending on settings)

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 19 of 62

The upper area shows the current settings.

You can change the IP Address of your coupling master in the lower area . The new IP Address

is valid after a restart of the coupling master. Before you do this, set the DIP-switches to “0001”.

If you don´t set them to the position “0001”, the IP Address is set accoding to the DIP switches.

You can reboot the system by clicking on the onboard reset button.

6.2.5.4.2 eB_Overview

The next point in the main window is the “eB Overview”. Here you will get all the information of

the connectet slaveBRICKs.

- You can choose the Node and see

o The total number of initialization attempts (counts successfull and non successfull

initialisations)

o the number of connectet Bricks on the bus

o and the used StackVersion

- on the right side you can switch between all connectet Bricks and you get the following in-

formations

o Brick-ID

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 20 of 62

o Manufacture-ID

o Hardware-Version (FW-Ver.)

o State of the Brick

o Protocol-Version

6.2.5.4.3 ModBUS

In the ModBUS settings you can change the ModBUS communication type between RTU and

TCP/IP. You can also set the baudrate when you use RTU over RS485, switch the communica-

tion on or off, set the ModBUS address and a timeout.

6.2.5.4.4 API

The last point is the “API” in the mainwindow.

This point serves only for internal debugging purposes of IMACS manufacturing.

6.2.6 Plugin “LAN

See below LAN/RSxxx Communications for details of the protocol used.

6.2.7 Plugin "CAN"

See below CAN based remote Communications for details of the protocol used.

6.2.8 Plugin "Modbus Large Block"

See below ModBUS Large Block for details of the protocol used.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 21 of 62

6.2.9 Plugin "Modbus Nativ" (planned)

See below ModBUS Nativ for details of the protocol used.

6.2.10 Plugin “Local Application” (on demand)

This plugin allows Programmers to code their own local application running e.g. in case the re-

mote communication is off.

The remote communication plugins have a time counter which indicates the time elapsed since

the last update from remote. This timer can be used to detect a break in the communication. In

the default implementation, for pure bridge applications all brick outputs are set to 0 in case the

communication is off for a certain time (settable as “Remote Timeout” between 0.01 and 9.99

seconds).

Care should be taken when both the remote communication and the local application manipu-

late the data for the brickBUS simultanously. In this case it is not predictable which data is

transferred via the brickBUS.LAN/RSxxx Communications.

6.2.11 Software History and internal repository

Software Version Changes
0.35 internal, not released
0.36 internal, not released

0.37 released: problem with IP settings via DIP-switches fixed
0.03 First firmware with integrated ModBUS interface (communication

changeable between ModBUS TCP or RTU)
0.50 First firmware including communication over LAN and ModBUS LB
0.51 Fixed crc calculation in ModBUS LB
0.52 Fixed connection problems with ModBUS TCP
0.53 Fixed problem with failing connections between pc-target programs

a remote master

0.54 Fixed bug with checksum errors by ModBUS RTU
0.55 Special version without Ethernet interface possible

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 22 of 62

6.3 LAN/RSxxx Communications

6.3.1 Basics

This communication is used for different physical transportation layers that supports larger da-

ta blocks like Serial (RSxxx) and TCP/IP (LAN, WLAN). The common part of all transportation

layers are the structure of the application data.

The remote-bus allows a connection between a Remote-Master (e.g. an ES, EPC, PC, PLC or

other device) and a Local-Master. The local-master (= coupling master) distributes the incoming

data to up to 32 emBRICK®-modules and get the state from the modules to send it (on request)

to the remote master.

sends requests

brickBUS® string

with up to 31 bricks

(emBRICK®-modules)

remote master
communication client

initiate communication

local-bus
none emBRICK system emBRICK system

replies with answers

remote bus

brick brick brick

other / more

local masters

local master
communication server

starts local-bus update-cycle

after each executed

remote-bus update-cycle

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 23 of 62

6.3.2 Remote Bus Protocol Definition V4

6.3.2.1 Communication block overview:

The protocol uses the same header/data structure throughout all communications:

6.3.2.2 Header overview

The Header consists of the Command Byte (see below for possible Command Bytes), and the

size of the message, including the Header. Thus, the length of a message is always equal to or

greater than 6. Example: 6 Bytes Header + 200 Bytes Data → length of message = 206.

6.3.2.3 Available commands

Command Effect

1 alive request:
Local-Master answers „Hello World “, coded in ASCII, back to the client

2 configuration request:
Local-Master returns the Configuration-Data of all connected bricks (modules)

3 Reset local bus

16 data update request with …
a) … sending the Out-Image to the Local-Master.
b) whereas the Local-Master answers by sending the last received In-image of the
brickBUS to the Remote-Master.
Then a new brickBUS update cycle is started (by writing the received data from the Re-
mote-Master onto the brickBUS and buffer the received brickBUS data)

254 close request:
The Local-Master closes the communication (e.g. a tTCP/IP socket) that was opened by
the Remote-Master. This command is in TCP/IP communication normally not required,
since simply closing the communication from the master has exactly the same effect.

6.3.2.4 Command “1” – alive request

6.3.2.4.1 Request

Send the following message (no data needed):

6.3.2.4.2 Response

The Localmaster should respond with:

Header [6 Bytes]

18, 0 1, 0, 0, 0

Data [12 bytes]

“Hello World”

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 24 of 62

6.3.2.5 Command “2” – Configuration request

6.3.2.5.1 Request

To request the configuration of the connected brickBUS-string (information about the modules

found and initialized), the following message has to be sent to the Local-Master (no data need-

ed):

6 0 2 0 0 0 0

6.3.2.5.2 Response

Header [6 Bytes]

(6+9+n*11)%256, (6+9+n*11)/256, 2, 0, 0, 0

Data [9+n*11 Bytes]

Output Data, see below

Where n is the number of emBricks.

Most figures in the response are only usable if the status of the local master is “1”, i.e. if the

Master is operating. Therefore, the response should be discarded if status of local master is “0”.

1st local-master data

Purpose Byte no. Example / Note

number of connected bricks 0 [1… 32] 01h (1 module found)

status of the local-master 1 [0...1] 01h (operating) / 00h (not operating)

component ID of the local-master
(here 1-603 = 0643h)

2 (MSB) 06h

3 (LSB) 43h

remote bus protocol version 4 04h (see below “Version History” for
details)

software version of local-master 5 [1...255] 14h

Local Master manufacturer ID 6 [1...255] 01h (1=IMACS)

Reserved 7 (MSB) 00h (currently fix)

Reserved 8 (MSB) 00h (currently fix)

2nd followed by n blocks of the configuration of all connected (and initialized) bricks

(I/O-modules). n is equal to the number of connected bricks received in the 1st part

Here: b = is the number of the corresponding brick [0...30]

 the example data are of the module P-2Rel4Di2Ai-01

Purpose Byte no. Example / Note

status of slave-module 9+(b*11) + 0 01h

Data Length MOSI (local Master ->
Slave) [bytes]

9+(b*11) + 1 01h

Data length MISO (Slave -> Local
Master) [bytes]

9+(b*11) + 2 06h (here: 1 + 2 + 2 + 1)

Slave local bus protocol version 9+(b*11) + 3 0Bh

Slave hardware revision 9+(b*11) + 4 12h

Slave device ID
(here P-2Rel4Di2Ai-01: 5-131 = 140Bh)

9+(b*11) + 5 (MSB) 14h

9+(b*11) + 6 (LSB) 0Bh

Slave manufacturer ID 9+(b*11) + 7 (MSB) 01h (1=IMACS)

9+(b*11) + 8 (LSB)

Data offset MOSI (local Master -> 9+(b*11) + 9 00h rising according used modules

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 25 of 62

Slave)

Data offset MISO (Slave -> Local
Master)

9+(b*11) + 10 00h rising according used modules

6.3.2.6 Command “3” – reset local bus

This command triggers a new initialisation sequence of the local bus

6.3.2.6.1 Request

Send the following message (no data needed):

6 0 3 0 0 0 0

6.3.2.6.2 Response

The Localmaster should respond with an echo of the transmitted request (no data needed)

6 0 3 0 0 0 0

6.3.2.7 Command “16” – update

6.3.2.7.1 Request

To update the data (write, read) of the Local-Master and the Slaves, the following message has

to be sent to the Local-Master.

Header [6 Bytes]

(n+6)%256, (n+6)/256, 16, 0, 0, 0

Data [n Bytes]

Output Data, see below

The output data consists of 3 parts:

Master Data Offset

2 Bytes (LSB|MSB)

Slave Output Data

i Bytes

Master Data Area

62 Bytes

i→dependant on the type and number of modules

See Product Documentation for a complete list of individual output data for all em-

BRICK®-modules.

The master data offset is calculated from the start of the data area (master data offset = 2 + i).

If the Slave output data area is 200 bytes wide, the master data offset would be 2 + 200 = 202.

Slave output data

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 26 of 62

All output bytes are transferred as raw data containing the values of the different outputs (DO,

AO). The data is sorted by the sequence of the bricks. The data of each brick is sorted as de-

fined for the brick (see product documentation).

Therefore, the slave output data contains

Brick 0 data bytes 0...n1 (see brick docu for number of bytes)

Brick 1 data bytes 0...n2 (see brick docu for number of bytes)

etc. until the number of bricks connected to the bus is reached.

Master data area

All output bytes are transferred as raw data containing the values of the different outputs (DO,

AO) of the Local-Master. The data of the local master is sorted as defined for the local master

(see product documentation).

6.3.2.7.2 Response

The response works similar to the request.

Header [6 Bytes]
(n+6)%256, (n+6)/256, 16, 0, 0, 0

Data [n Bytes]
Input Data, see below

The input data consists of 3 parts

Master Data Offset
2 Bytes (LSB|MSB)

Slave Input Data
i Bytes

Master Data Area
62 Bytes

i→dependant on the type and number of modules

See Product Documentation for a complete list of individual output data for all em-

BRICK®-modules.

The master data offset is calculated from the start of the data area (master data offset = 2 + i).

If the Slave input data area is 200 bytes wide, the master data offset would be 2 + 200 = 202.

Slave input data

For each Slave the first byte transferred is the status of this Slave. The status is followed by the

input bytes as raw data containing the values of the different inputs (DI, AI, CNT). The data is

sorted by the data of bricks. The data of each brick is sorted as defined for the brick (see prod-

uct documentation).

If no valid input data is available, e.g. during brickBUS init sequence, the Slave input data field is

empty and the Master data offset is 2.

Master data area

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 27 of 62

All input bytes are transferred as raw data containing the values of the different inputs (DI, AI,

CNT) of the Local-Master. The data of the local master is sorted as defined for the local master

(see product documentation).

6.3.2.8 Command “254” – close request

This command is used to order the CouplingBrick to properly close the connection.

This command is in TCP/IP communication normally not required, since simply closing the

communication from the master has exactly the same effect.

6.3.2.8.1 Request

6.3.2.8.2 Response

The CouplingBrick will not respond like the previous commands. Instead it will respond with a

FIN-message.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 28 of 62

6.3.3 Data Transportation

6.3.3.1 TCP/IP via LAN/WLAN

By using TCP/IP, the communication blocks described above are transferred as described

without additional information. The connection, routing, error detection/correction will be done

automatically by the TCP/IP socket.

Each TCP/IP-message transfers one communication block.

Recommended communication process:

• Connect to the local-master. Request Configuration Data from local-master.

• Exchange Data with the local-master (every 5ms … 50ms).

• Close the connection.

Typically, the Local-Master waits on Port 7086 for incoming connections.

For more information about connection, addressing and setup refer to the available hardware

components (i.e. CAE_Z-LWCS-M32-xx).

6.3.3.2 Serial via RS232/RS485 (planned)

6.3.3.2.1 Basics

When using a RSxxx, the communication blocks of Fehler! Verweisquelle konnte nicht gefun-

den werden. will be used. Therefore, a RSxxx connection has no native routing or error detec-

tion/correction an additional protocol will be used as a transportation frame as descried below.

Beside the data content, the physical parameters are:

▪ 9600/38400/115000 Baud, no parity, 8 data bits, 1 stop bit, half-duplex

▪ The gap between two bytes of one message have to be < 100 x Bit-Time. Otherwise a mes-

sag will be droped and the receiver expects a new message. This behaviour can also be

used to "reset" the communication protocol machine after a communication error.

6.3.3.2.2 Framing of Message to Local Master

Remote-Master (client) sends to Local Master(s) (server):

Purpose Byte No. Example / Note

souce ID (actual not sup.) 0 actual don´t care

drain ID (actual not sup.) 1 actual don´t care

<data > (according Fehler! Verweis-
quelle konnte nicht gefunden wer-
den.)

2 … s

254

checksum s+1 (LSB) CS L (see below)

s+2 (HSB CS H (see below)

If the data were received correctly by the local-master (CRC is ok), the local-master returns the

checksum (2 bytes) to the remote-master. If the Remote-Master do not receive this checksum

ter it is an indication for an error and the remote-master can react (i.e. wait the gap and send the

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 29 of 62

message again). If a reply from the local-master is necessary, its data are follow after the

checksum by a reply message (see below).

6.3.3.2.3 Framing of Reply from Local Master

Local Master (server) answers to Remote Master (client):

Purpose Byte No. Example

<data > (according Fehler! Verweis-
quelle konnte nicht gefunden wer-
den.)

1 … s

254

checksum s+1 (LSB) CS L (see below)

s+2 (HSB CS H (see below)

Also, the reply message has to be checked with the checksum by the reomote-master about the

corectness. If the remote-master detects a error, he i.e. drop the message and repeat the com-

munication cycle. Calculation of the Checksum

6.3.3.3 Checksum

The caclutation oft he checksum corresponsds with the standard of Modbus.

unsigned char *pMessage = ??????; // initialize pointing to message
short lenMessage= ????; // initialize with len of message

unsigned short CRC = 0xFFFF;
short i,k;

for (i=0; i < lenMessage; i++, pMessage++)
{
 unsigned short x;
 unsigned short x2;
 x = (unsigned short)(*pMessage);
 CRC ^= x ;
 for (k=0; k < 8; k++)
 {
 x2 = CRC & 0x0001;
 CRC >>= 1;
 if (x2)
 CRC ^= 0xA001;
 }
}
// now "CRC" is the result

6.3.3.4 Serial via I2C

t.b.d.

6.3.4 Error detection and handling

6.3.4.1 Local Master

A local master (e.g. CAE_Z-PatBridge#, CAE_Z-UniBridge#,) has a “Remote Timeout” parameter.

If the local master does not receive a data message wihin that time from the remote master, it

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 30 of 62

sets the all output data of all connected IO-bricks to 0. This value value should be set to a value

according your safety criterias (e.g. to 1 second).

6.3.4.2 Remote Master (General)

The description herein refers to the IMACS implementation of a remote master stack. It is rec-

ommended to follow this strategy if implementing your own remote master.

The remote master runs in its own thread using a state machine which is called periodically. It

is recommended to call this state machine every 10 ms, a range of 2..50 ms should not be ex-

ceeded. Values mentioned hereafter must probably be modified if another rate then 10ms is

choosen. In the following, every call of the state machine is referenced as “cycle”.

The remote mater stack can service more than one local master (referenced as “node”). Every

node is handelt separately, i.e. the behavior described in this chapter references always one

node if not stated otherwise.

The remote master logs all messages in a logfile “brickbus.log”. This logfile exists once for all

nodes.

The remote master stack has an error counter, which is set to a predefined value e.g. when a

request from the remote master to the local master is started and counted down every cycle.

6.3.4.3 Proceedings in remote master

First, the stack generates a welcome message indicating several version numbers.
Then the file eB_LAN.cnf is parsed. Every encountered error generates a message in the logfile.

Then the LAN connection is established. The error counter is set to 500 cycles. If it reaches 0, a
message „Connection to … timed out.“ Is generated and a reconnect is started

Then the Init data is sent / requested. The error counter is set to 10 cycles. If it reaches 0, a
message „"Receiving init data from … timed out."“ Is generated and a reconnect is started

Then the data is sent and requested. The error counter is set to 3 cycles on every transmission
of a data send/request from the remote master If it reaches 0 before a response from the local
master is received, a message „"Receiving data from … timed out." “ is generated and the next
transmission of data sent/request is started. Also after receiving a response (either correct or
erroneous) the data is sent and requested as described above

All numbers are default values. They can be overwritten by the application program.

6.3.4.4 Warning data not received in time

On receiving data, theremote master stack expects the response to arrive within one cycle. Eve-
ry cycle, data is not recevied a message "Warning on try " << numTry << ": data for node " <<
node.name << " not received in time." Is generated.The remote master stack continues to listen
for incoming messages in the next cycle(s).

6.3.5 Protocol History

Versions of Remote-Bus-Protocal LAN/RSxxx

Version availbale since Modifications / Enhancements

2 12/2013 First released implementation

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 31 of 62

3 02/2014 Added 2 bytes to the header for standard data exchange.

4 08/2017 Further defintions in protocol

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 32 of 62

6.4 CAN based remote communication (planned)

6.4.1 Basics

The CAN-Connection is used to establish a communication from the remote-master (1) to the

local-master (2). The local-master will act as a coupler, distributing the data onto the emBRICK®

-modules (3).

swergar

local-master remote-master

emBRICK®-modules

Data sent by the remote-master

Data received by the remote-master

Autosend 1

Autosend n

U
p

d
a

te
 a

ft
e

r
e

m
B

R
IC

K
®

-U
p

d
a

te
c

y
c

le

S
a

v
e

d
 d

a
ta

 s
ta

tu
s

 f
ro

m
 w

h
e

n
 t

h
e

 d
a

ta

s
e

n
t

b
y

th
e

 lo
c

a
l-

m
a

st
e

r
w

a
s

 a
d

o
p

te
d

.

Paketwise transmission of

Data. Adoption on Data if all

Packets are received.

Packet transmission of

Data. Adoption of Data if all

Packets are received.
Automatic Sending of

specific Data with high

priority (Autosend).

Couples remote-master

and emBRICK®-modules

Controls emBRICK®

update-cycle

Sends Requests

Receives Answers

brickBUS®-

Protocol
CAN

Autosend
CAN

complete output-/input-buffer

Master initializes

each Autosend









 

 

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 33 of 62

6.4.2 Mode of Operation

Two methods of communication between the local-master and the remote-master are imple-

mented, the standard communication and the Autosend.

The standard communication is used to update all emBRICK®-modules. To execute a standard

communication, the remote-master has to send a buffer containing all data needed to com-

pletely describe the output status of all emBRICK®-modules (4). The buffer will most likely not

fit into the 8 byte data area of a CAN-message. Thus it has to be split up into multiple packets

(5). The first packet gets the packet-index 0. The packet-index will increase consecutively with

each packet sent. The last packet gets the packet-index 255. Once the local-master receives a

packet with the packet-index 255, it will distribute the received data to the emBRICK® -modules

with the next update-cycle and send the last known input status of all emBRICK® -modules back

to the remote-master (6) in the same way (7).

Sending and receiving the complete buffer is often unnecessary. Also, the emBRICK® -modules

will get updated faster than the CAN-Communication is able to exchange the data with the re-

mote-master, effectively limiting the whole system. To read some inputs more often than others,

a second method of communication has been implemented:

The Autosend has to be set up once (9) by the remote-master and runs independent on the lo-

cal-master (10). It will periodically send 6 bytes or 4 words of the input-buffer. The offsets of

these bytes or words can be defined in the setup. To setup an Autosend, an au-

tosend-initialization packet has to be sent. Autosends will get priority over the stand-

ard-communication.

6.4.3 Description of Operation

The Buffer for the standard communication will be split into multiple CAN-Messages if neces-

sary. The packet-index for the first message is ‚0‘. Each following packet has its Packet-Index

increased by 1. The last Packet has the packet-index ‘255’.

After each brickBUS®-Cycle the CAN-Slave checks if a message has been completely received.

In this case, the message will be written to the brickBUS®-output-buffer. Simultaneously, the

brickBUS®-input-buffer will be copied into a CAN-Buffer. This Buffer is than sent back to the re-

mote-master. This ensures integrity of the Data while it is transmitted via CAN.

The local-master can send specific areas of the brickBUS®-input-buffer automatically. This is

called Autosend. The local-master supports up to 32 different Autosends. Each of those Au-

tosends can either transmit 6 Bytes or 4 Words. Every Autosend has to be set up with its Repeti-

tion Rate, Autosend-ID and Byte-/Word-Offsets in the brickBUS®-input-buffer. The fastest repeti-

tion time is 1ms. However, it is not recommended to set the Autosend Repetition Time to be

lower than the brickBUS® Cycle Time. The recommended minimum brickBUS® Cycle Time is

depending on the number and type of connected Slave-Modules. The standard setting for the

brickBUS® Cycle Time is 10ms.

Autosends will get priority before the Standard Communication.

When multiple Autosends are scheduled for the same timeframe, the Autosend with the earliest

scheduled transmission date will be sent first. When multiple Autosends share the same sched-

uled transmission date, the Autosend that has been set up first will be sent first.

Standard-Bitrate is 500 kBit/s.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 34 of 62

6.4.3.1 Composition of the 29 Bit Arbitration Field (CAN2.0B)

The Arbitration Field is used to identify different Packets. The Arbitration Field is structured as

follows:

28 - 21 20 19 - 16 15 - 8 7 - 0

AAAA AAAA M CCCC PPPP PPPP BBBB BBBB

B → fix 8-Bit Base-ID, can be changed by the customer (Standard = 1)

P → Package-Index 0...255 (consecutive number for linear data exchange)

C → Command-ID 0...15

M → 1 = Master sends, 0 = Slave sends

A → Node-Address 0...255 (in case of multiple CAN-Slaves)

6.4.3.2 Commands

Command Function

0x2
(must consist of 2 Packa-
ges)

Exchange the complete emBRICK®-output/input-buffer; Packet-Index 0xFF sig-
nals end of transmission

0x3 Configures how fast the emBRICK® -Master sends out CAN-Messages
[0...0xFFFF]; ‘0’ = as fast as possible, other Values = Time in ms between
CAN-messages

0x4 Set up brickBUS® Cycle Time [0...0xFFFF] in ms; Standard = 10. Value ‚0‘stops
the BUS.

0x7
(LEN=0)

Clear all Autosends

0x8
(LEN=6)

Setup a Word Autosend (1x)
 Byte 0 = Autosend-Frame ID 0...31
 Byte 1 = Autosend-Rep-Rate (1...255 ms)
 Byte 2 = offset of Autosend-Word 1 (of input-Buffer)
 Byte 3 = offset of Autosend-Word 2
 Byte 4 = offset of Autosend-Word 3
 Byte 5 = offset of Autosend-Word 4

0x9
(LEN=8)

Setup a Byte Autosend (1x)
 Byte 0 = Autosend-Frame ID 0...31
 Byte 1 = Autosend-Rep-Rate (1...255ms)
 Byte 2 = offset of Autosend-Byte 1 (of input-Buffer)
 Byte 3 = offset of Autosend-Byte 2
 Byte 4 = offset of Autosend-Byte 3
 Byte 5 = offset of Autosend-Byte 4
 Byte 6 = offset of Autosend-Byte 5
 Byte 7 = offset of Autosend-Byte 6

0xA
(LEN=0)

Initialize emBRICK®-String and receive configuration Data

0xB
(LEN=0)

Send and receive command Data

0xF
(LEN=1)

Set base-ID
 Byte 0 = fix 8-Bit base-ID

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 35 of 62

6.4.3.3 Command Data Field

The Command Data Field is a 8 Byte Data Field that contains all available commands that can

be sent to the Master. Upon receiving the Command Data Field, the local master will send back

the Status Data field which contains various Data about the current State of the brickBUS and

itself.

6.4.3.3.1 Description of Command Data Field (remote master → local master)

Byte Function

0 Bit 0: clear EEPROM Error
Bit1: restart brickBUS
Bit2: stop brickBUS

1 -

2 -

3 Set expected number of emBRICK®-modules in the string; The local master will
continue to initialize the brickBUS until the expected number of em-
BRICK®-modules are found; deactivate this feature by sending ‘0’ on this Byte.
(0...31)

4 -

5 -

6 -

7 -

6.4.3.3.2 Description of Status Data Field (local-master → remote master)

Byte Function

0 Bit 0: atleast one checksum-error occurred in the last message
Bit 1: EEPROM could not be read; if set, this must be cleared before sending
Data

1 Number of emBRICK®modules found in the string. (0...31)

2 -

3 -

4 -

5 -

6 -

7 -

6.4.3.4 Configuration data local-master→ remote-master

1x emBRICK®-Master

Offset Purpose

0 size

1 status

2 master_id – high Byte

3 master_id – low Byte

4 local-/remote-master protocol version

5 local-master software version

6 manufacturer ID

7 peripheral_id high byte

8 peripheral_id low Byte

Slaves (n = Number of Slave)

Offset Purpose

(9*(n+1))+0 status

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 36 of 62

(9*(n +1))+1 data length output data

(9*(n +1))+2 data length input data

(9*(n +1))+3 protocol version

(9*(n +1))+4 hardware version

(9*(n +1))+5 deviceID – high byte

(9*(n +1))+6 deviceID – low byte

(9*(n +1))+7 manufacturer ID – high byte

(9*(n +1))+8 manufacturer ID – low byte

(9*(n +1))+9 offset of output-buffer

(9*(n +1))+10 offset of input-buffer

Use the offset of the input/output-buffer to extract/insert IO Data for each Slave out of the re-

ceived/transmitted data buffer.

6.4.4 Example of a Configuration Message

6.4.4.1 Data received by Master

 Time Chn ID Name Dir DLC Data

 | 45.701062 1 1A0001x Tx 0

 | 45.701914 1 A0001x Rx 8 0B 00 06 42 01 12 01 00

 | 45.702442 1 A0101x Rx 8 00 00 01 01 0B 01 08 FE

 | 45.702974 1 A0201x Rx 8 00 01 00 00 01 01 01 0B

 | 45.703505 1 A0301x Rx 8 01 08 FE 00 01 01 01 01

 | 45.704041 1 A0401x Rx 8 01 01 0B 0F 08 FD 00 01

 | 45.704567 1 A0501x Rx 8 02 02 00 01 01 0B 0F 08

 | 45.705107 1 A0601x Rx 8 FD 00 01 03 03 00 01 01

 | 45.705558 1 A0701x Rx 8 0B 0F 08 FD 00 01 04 04

 | 45.706018 1 A0801x Rx 8 00 01 01 0B 0F 08 FD 00

 | 45.706600 1 A0901x Rx 8 01 05 05 00 11 12 0B 03

 | 45.706890 1 A0A01x Rx 8 09 9D 00 01 06 06 00 11

 | 45.707175 1 A0B01x Rx 8 12 0B 03 09 9D 00 01 17

 | 45.707459 1 A0C01x Rx 8 18 00 01 01 0B 0F 08 FD

 | 45.707747 1 A0D01x Rx 8 00 01 28 2A 00 01 01 0B

 | 45.708031 1 A0E01x Rx 8 0F 08 FD 00 01 29 2B 01

 | 45.708319 1 A0F01x Rx 8 01 01 0B 0F 08 FD 00 01

 | 45.708498 1 AFF01x Rx 2 2A 2C

6.4.4.2 Data formatted into Blocks for Master and Slaves:

Configuration Data of the emBRICK®-Master 0B 00 06 42 01 12 01 00 00

Configuration Data of emBRICK®-Module 1 00 01 01 0B 01 08 FE 00 01 00 00

Configuration Data of emBRICK®-Module 2 01 01 01 0B 01 08 FE 00 01 01 01

Configuration Data of emBRICK®-Module 3 01 01 01 0B 0F 08 FD 00 01 02 02

Configuration Data of emBRICK®-Module 4 00 01 01 0B 0F 08 FD 00 01 03 03

Configuration Data of emBRICK®-Module 5 00 01 01 0B 0F 08 FD 00 01 04 04

Configuration Data of emBRICK®-Module 6 00 01 01 0B 0F 08 FD 00 01 05 05

Configuration Data of emBRICK®-Module 7 00 11 12 0B 03 09 9D 00 01 06 06

Configuration Data of emBRICK®-Module 8 00 11 12 0B 03 09 9D 00 01 17 18

Configuration Data of emBRICK®-Module 9 00 01 01 0B 0F 08 FD 00 01 28 2A

Configuration Data of emBRICK®-Module 10 00 01 01 0B 0F 08 FD 00 01 29 2B

Configuration Data of emBRICK®-Module 11 01 01 01 0B 0F 08 FD 00 01 2A 2C

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 37 of 62

6.4.5 Examples of a Data Message

6.4.5.1 Data received by Master

 Time Chn ID Name Dir DLC Data

 | 5.688078 1 20001x Rx 8 01 01 01 01 01 01 01 00

 | 5.687784 1 20101x Rx 8 0D 00 0D 00 0E 00 0E 00

 | 5.687548 1 20201x Rx 8 0D 00 00 00 00 00 00 07

 | 5.687298 1 20301x Rx 8 01 00 0D 00 0D 00 0E 00

 | 5.687050 1 20401x Rx 8 0D 00 0D 00 00 00 00 00

 | 5.686808 1 2FF01x Rx 5 00 C7 01 01 01

6.4.5.1.1 Data formatted for each Slave:

Slave-Module offset of
input-buffer

data length
input-data

Data

1 0x0 0x01 0x01

2 0x1 0x01 0x01

3 0x2 0x01 0x01

4 0x3 0x01 0x01

5 0x4 0x01 0x01

6 0x5 0x01 0x01

7 0x6 0x12 0x01 0x00 0x0D 0x00 0x0D 0x00 0x0E 0x00
0x0E 0x00 0x0D 0x00 0x00 0x00 0x00 0x00
0x00 0x07

8 0x18 0x012 0x01 0x00 0x0D 0x00 0x0D 0x00 0x0E 0x00
0x0D 0x00 0x0D 0x00 0x00 0x00 0x00 0x00
0x00 0xC7

9 0x2A 0x01 0x01

10 0x2B 0x01 0x01

11 0x2C 0x01 0x01

Offset of input-buffer and data length input data are being taken from the Configuration mes-

sage.

6.4.5.1.2 Structure of Slave Data received by Master

On the first byte of every data field, a Status-Byte will be transmitted. The Status-Byte can be

used to identify problems with the BUS-communication. The Status-Byte is followed by the data

area of the Slave as described in the Product Overview. It is advised to display the Status-Byte

somewhere in the application. If the Status-Byte has the value ‘1’ everything is as expected. If

the status-byte frequently switches to other values, check your environment for interference

fields.

Byte 0 Byte 1...n (if available)

Status-Byte Data

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 38 of 62

6.4.5.2 Data sent to Slave

Sending Data to the local-master (writing to the emBRICK-output-buffer) works similarly with the

difference in being M = 1, use of offset of output-buffer instead of offset of input-buffer and use

of data length output data instead of data length input data.

 Time Chn ID Name Dir DLC Data

 | 5.688078 1 120001x Rx 8 03 00 07 D0 0B 0F 0F 11

 | 5.687784 1 120101x Rx 8 02 01 06 A8 0A BC 0E 10

 | 5.687548 1 120201x Rx 8 21 33 44 45 66 34 88 69

 | 5.687298 1 120301x Rx 8 3A 3B CC 37 02 01 00 01

 | 5.687050 1 120401x Rx 8 03 02 0F 05 06 D0 80 09

 | 5.686808 1 12FF01x Rx 5 0A 02 0C

6.4.5.2.1 Data formatted for each Slave

Slave-Module offset of
output-buffer

data length out-
put data

Data

1 0x0 0x01 0x03

2 0x1 0x01 0x00

3 0x2 0x01 0x07

4 0x3 0x01 0xD0

5 0x4 0x01 0x0B

6 0x5 0x01 0x0F

7 0x6 0x11 0x0F 0x11 0x02 0x01 0x06 0xA8 0x0A 0xBC
0x0E 0x10 0x21 0x33 0x44 0x45 0x66 0x34
0x88

8 0x17 0x011 0x69 0x3A 0x3B 0xCC 0x37 0x02 0x01 0x00
0x01 0x03 0x02 0x0F 0x05 0x06 0xD0 0x80
0x09

9 0x28 0x01 0x0A

10 0x29 0x01 0x02

11 0x2A 0x01 0x0C

Offset of output-buffer and data length output data are being taken from the Configuration

message.

6.4.5.2.2 Structure of Slave Data sent by Master

The data-field of each Module only consists of the actual Data as described in the Product

Documentation.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 39 of 62

6.4.6 Examples of a Command/Status Message

6.4.6.1 Data sent by remote master

This example will reset the brickBUS

ID Length Data [hex]

0x001B0001 8 02 00 00 00 00 00 00 00

Data received by remote master

ID Length Data [hex]

0x000B0001 8 00 04 00 00 00 00 00 00

See 6.4.3.3.1 and 6.4.3.3.2.

6.4.7 Error detection and handling

t.b.d.

6.4.8 Protocol History
CAN Protocol
Version

Modifications

1 First released implementation

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 40 of 62

6.5 ModBUS Large Block

In this case, the coupling bridge (local master) acts as ModBUS slave while the remote master

acts as ModBUS master.

6.5.1 Data representation

Only the data types “Input Registers” (for input data and init data) and “Holding Registers” (for

output data) are used.

CAUTION: The Data field must not exceed 250 bytes (due to ModBUS restrictions).

The byte stream of the data is mapped to the 16bit registers without reformatting to network

byte order.

6.5.1.1 Data Mapping Input Registers (Slave input Data)

The Slave input data is in the address range 0000h ... 007Ch. It consecutively lists all slave input

data. The number of bytes of the slave input data is depending on the type and number of mod-

ules, see Product Documentation for a complete list of individual input data for all em-

BRICK®-modules.

The byte stream of the input data is mapped to the 16bit input registers without reformatting to

network byte order.

For each Slave the first byte transferred is the status of this Slave. The status is followed by the

input bytes as raw data containing the values of the different inputs (DI, AI, CNT). The data is

sorted by the data of bricks. The data of each brick is sorted as defined for the brick (see prod-

uct documentation).

If no valid input data is available, e.g. during brickBUS init sequence, all values are set to 0.

6.5.1.2 Data Mapping Input Registers (Master input Data)

The Master input data is in the address range 0100h .. 011Eh. It consecutively lists 62 bytes

master input data. All input bytes are transferred as raw data containing the values of the dif-

ferent inputs (DI, AI, CNT) of the Local-Master. The data of the local master is sorted as defined

for the local master (see product documentation).

6.5.1.3 Data Mapping Input Registers (Init Data)

The init data is in the address range 1000h ... 107Ch. It contains init data of the local master

followed by n blocks of init data of all connected (and initialized) bricks (I/O-modules).

Most figures in the response are only usable if the status of the local master is “1”, i.e. if the

Master is operating. Therefore, the response should be discarded if status of local master is “0”.

1st local-master data

Purpose Byte no. Example / Note

number of connected bricks 0 [1… 32] 01h (1 module found)

status of the local-master 1 [0...1] 01h (operating) / 00h (not operating)

component ID of the local-master
(here 1-603 = 0643h)

2 (MSB) 06h

3 (LSB) 43h

remote bus protocol version 4 01h (see below “Version History” for
details)

software version of local-master 5 [1...255] 14h

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 41 of 62

Local Master manufacturer ID 6 [1...255] 01h (1=IMACS)

Reserved 7 (MSB) 00h (currently fix)

Reserved 8 (MSB) 00h (currently fix)

2nd followed by n blocks of the configuration of all connected (and initialized) bricks

(I/O-modules). n is equal to the number of connected bricks received in the 1st part

Here: b = is the number of the corresponding brick[0..30]

 the example data are of the module P-2Rel4Di2Ai-01

Purpose Byte no. Example / Note

status of slave-module 9+(b*11) + 0 01h

Data Length MOSI (local Master ->
Slave) [bytes]

9+(b*11) + 1 01h

Data length MISO (Slave -> Local
Master) [bytes]

9+(b*11) + 2 06h (here: 1 + 2 + 2 + 1)

Slave local bus protocol version 9+(b*11) + 3 0Bh

Slave hardware revision 9+(b*11) + 4 12h

Slave device ID
(here P-2Rel4Di2Ai-01: 5-131 = 140Bh)

9+(b*11) + 5 (MSB) 14h

9+(b*11) + 6 (LSB) 0Bh

Slave manufacturer ID 9+(b*11) + 7 (MSB) 01h (1=IMACS)

9+(b*11) + 8 (LSB)

Data offset MOSI (local Master ->
Slave)

9+(b*11) + 9 00h rising according used modules

Data offset MISO (Slave -> Local
Master)

9+(b*11) + 10 00h rising according used modules

6.5.1.4 Data Mapping Holding Registers (Slave output Data)

The slave output data is in the holding registers address range 0000h .. 007Ch. It consecutively

lists all slave output data. The number of bytes of the slave output data is depending on the

type and number of modules, see Product Documentation for a complete list of individual out-

put data for all emBRICK®-modules.

All output bytes are transferred as raw data containing the values of the different outputs (DO,

AO). The data is sorted by the sequence of the bricks. The data of each brick is sorted as de-

fined for the brick (see product documentation).

Therefore, the slave output data contains

Brick 0 data bytes 0...n1 (see brick docu for number of bytes), followed by

Brick 1 data bytes 0...n2 (see brick docu for number of bytes) followed by

Brick 2 data etc. until the number of bricks connected to the bus is reached.

6.5.1.5 Data Mapping Holding Registers (Master output Data)

The output data is in the holding registers address range 0100h ... 011Eh. It lists 62 bytes mas-

ter output data.

6.5.2 Supported commands

Only the commands “Read Input Registers” (0x04), “Write multiple Registers” (0x10) and

“Read/Write multiple Registers” (0x17) are supported.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 42 of 62

6.5.2.1 Read Input Registers (0x04)

The number of bytes returned is always the double of the number requested in the bytes 3 and 4

of the command (“Quantity”). If this number is higher than the length of the actual input (MISO)

data of the bricks string, the remaining bytes are padded with zeroes. If it is shorter, the bytes

exceeding the requested size of the request are skipped.

6.5.2.2 Write multiple Registers (0x10)

If the number requested in the bytes 3 and 4 of the command (“Quantity”) is less than half the

number of bytes in the actual output (MOSI), only the first bytes in the MOSI buffer are updated.

If the number exceeds the actual output length, remaining bytes are ignored. The command re-

turns always the number in bytes 3 and 4 in the response bytes 3 and 4.

6.5.2.3 Read/Write mutliple Registers (0x17)

If the number requested in the bytes 7 and 8 of the command (“Quantity to Write”) is less than

half the number of bytes in the actual output (MOSI), only the first bytes in the MOSI buffer are

updated. If the number exceeds the actual output length, remaining bytes are ignored.

The number of bytes returned is always the double of the number requested in the bytes 3 and 4

of the command (“Quantity to Read”). If this number is higher than the length of the actual input

(MISO) data of the bricks string, the remaining bytes are padded with zeroes. If it is shorter, the

bytes exceeding the requested size of the request are skipped.

6.5.3 Restrictions

The following restrictions apply to the different header elements of a command:

Byte Meaning Restrictions

1 Function Code Only 0x04, 0x10 allowed

2,3 Starting address Only 0x0000, 0x0100,0x1000
allowed, see above

4,5 Quantity Must not exceed the size of
the fields as stated above

6.5.4 Data Transportation

6.5.4.1 LAN (ModBUS TCP)

The Ethernet address is to be set separately, see “Switching IP Address…” above.

As standard, Port 501 is used.

The Transportation Layer specifications of Modbus_Application_Protocol_V1_1b are met.

6.5.4.2 RS485 (ModBUS RTU)

The RS485 serial port is operating at 1Mbaud (other baudrates are available upon request), 8bit

data width, no parity, 1 stop bit.

The Transportation Layer specifications of Modbus_Application_Protocol_V1_1b are met.

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 43 of 62

6.5.5 Error detection and handling

6.5.5.1 ModBUS TCP

The ModBUS Timeout is the time within a message must be completed. Typically, this is ap-

prox. 0.01 .. 0.05 seconds for ModBUS TCP.

The remote master should have a timeout for receiving a response. In case the response is not

received wthin that time, the message should be repeated. After several tries, it is recommend-

ed to re-establish the connection. This typical timeout should typically be approx.. 0.1 seconds.

Please note that the Ethernet line automatically repeats a message if the message was not

transmitted correctly. The timeout should be set large enough to allow this Ethernet-implied re-

peats to take place.

Connection timeout beim Aufbau der Socket verbidnung

6.5.5.2 ModBUS RTU

If the ModBUS message is not completed within the time set as “ModBUS Timeout”, the mes-

sage is discarded and the receiver waits for the beginning of the next message. A reasonable

vaule for the ModBUS Timeout is approx. 0.01 .. 0.05 seconds for high baudrates (>100 000

baud) and approx. 0.15 seconds for 38400 baud.

Verhalten Koppel-Master (als ModBUS Slave):

TimeoutMbSRec typ. 500 Bytelängen (z.B. 5ms bei 1MBaud) wenn der
Empfang begonnen hat, und seit dem letzten Byte für dieses Dauer keine voll-
korrekte Nachricht erkannt wurde, wird der Modbus-Empfangs und Sendebuf-
fer gelöscht

TimeoutbBShutdown typ. 100ms … 1s wenn für diese Dauer keine neunen gültigen
Nachricht vom Master kommen, werden die BrickBUS-Out-Daten alle auf 0
(oder einen geteachten Notzustand) gestellt

Verhalten des externen Modbus-Masters:
TimeoutMbMAnswer typ. 10ms + 500 Bytelängen (z.B. bei 1MBaud somit ca. 15ms)

 wenn nach dem Versenden einer Message vom Master
an den Slave die Antwort vom Slave innerhalb dieser Zeit nicht vollständig
eingeht, werden alle seriellen Buffer gelöscht und der Master geht in den Zu-
stand "Waiting after Timeout"

Verhalten des Steuerungssystems (Remote-Master), das den ModBUS Master verwendet:
TimeoutRMAnswer typ. 100 ms wenn in dieser Zeit vom Kommunikations-

kanal (emBRICK-remoteBus via LAN, Modbus-TCP, Modbus-RTU, CAN) auf ei-
nen Buszyklus keine korrekte Antwort vom Remote-Slave bzw.
Modbus-Master vorliegt wird ein RMCycleAnswerError und ein RMRepear-
Counter hochgezählt. Beide Zähler werden auch bei anderen Empfangsfehler
hochgezählt. Nach einer korrekten Kommunikation wird der RMRepearCounter
gelöscht.

MaxRepRMReInit typ. 5 wenn der RMRepearCounter diesen Wert überschreitet
erfolgt auf dem Remote-Master ein Shutdown (d.h. die der Applikation vom

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 44 of 62

Brickbus-EA weitergeleteten Daten werden auf 0 gesetzt) und es wird versucht
einen neue Kommuniktion aufzubauen

6.5.5.2.1 Störungs-Szenarien zum Testen

(bei 1MBaud und 80ms Modbus-Zykluszeit)

alle 2s für 10ms => nur Fehler erkennen, kein Shut-Down

alle 250ms für 1ms => nur Fehler erkennen, kein Shut-Down

alle 10ms für 100µs => Shut-Down permanent solange Störung anliegt

aus-/einstecken => Shutdown nach 1s ausgesteckt

6.5.5.2.2 Infos über den radCASE Modbus-RTU Master (selbst)

siehe: ..\rc_lib\LIB\ModBUS.rad: ModulDef.MODUL:MModbusMaster <<

6.5.5.2.3 ModbusMasterState:

▪ Init,

▪ Waiting for Request

▪ Busy

▪ Waiting (vorher Receive Timeout Param: Modbus.Timeout)

▪ Waiting (vorher Error)

▪ Waiting (vorher flasche Daten)]

▪

Parameter:

Timeout einer Answer,

Derzeitiger Zeiten/Zyklus bei 1MBaud

1ms OutDaten an Slave

3ms Anzwortsverz. von Slave

<1ms Empfangsbestätigung von Slave

27ms Pause seitens Master

<1ms In-Daten von Slave anfordern

3ms Anzwortsverz. von Slave

<1ms Indaten verden von Slave an Master gesendet

50ms Pause seitens Master

 weiter mit oben

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 45 of 62

6.5.5.2.4 Infos über RemoteMaster (der den ModBUS-RTU Master verwendet)

beim Init wird 1000ms gewartet bei 38400 danach kommt sofort ein Reconnet

Zähler für Retry und Zähler für Reconnect

RemoteMaster-State: [TryInit, Connected] bei 38400 / 1MBaud

falls (1000/ xxxxx ms) keine/falsche Antwort => TryInit

die erste korrekten Nutzdaten wurden empfangen => Connected

Sowohl der ModBUS als auch der Master laufen in einer PERM-Schleife mit einer festen Wie-

derholzeit.

Beim LWCS betraegt die Wiederholzeit 2 ms (fest).

Beim Remote Master sind die Wiederholzeiten – getrennt fuer ModBUS und Remote Master –

als Parameter einstellbar (nur mit neuestem API.WinPC und API.BBB oder dem von H. Leitner

gebauten Spezial-API des DIA5500-II). Diese Werte stehen momentan noch auf 10ms, hier sind

sicherlich 1..2 ms sinnvoll – wenn der Rest-Applikation dann noch genuegend Rechenzeit bleibt.

The remote master should have a timeout for receiving a response. In case the response is not

completely received wthin that time, the message should be repeated. After several tries, it is

recommended to re-init the connection, i.e. to repeat the request for the Init data. The typical

timeout to receive a response depends on the transmission speed, it can be roughly calculated

with 2 times the transmission time (see above) + approc. 0.03 seconds for the internal calcula-

tion of the local master.

6.5.5.3 ModBUS (all versions)

Typically, the following errors may happen:

- Erroneous request to or response from local master

- Exception message

- Internal errors

The local master discards erroneous messages and waits for the next incoming request. If ap-

plicable, it responds with a exception message as defined by the ModBUS standard.

Exception messages from the master are simply ignored but reported on the visu.

The local master (e.g. Patbridge) has a “Remote Timeout”. If the local master does not receive a

data message wihin that time, it sets all connected Outputs to 0. Typically, its value should be

approx. 2 seconds.

The remote master shall repeat the request in case it receives an erroneous response (i.e.

wrong checksum). Incomming exception messages should be notified to the user.

6.5.6 Protocol History
Version Modifications

1 First released implementation

Remote-Bus Communication/Access

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 46 of 62

6.6 Modbus Nativ (further feature)

In this case, the coupling bridge (local master) acts as ModBUS slave while the remote master

acts as ModBUS master.

Local Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 47 of 62

7. Local Bus Access Programming

7.1 Using C/C++ via Raspberry Pi (Raspian, Geany)

refer to starterkit manual

7.2 Using C/C++ via BeagleBoneBlack (Angstrom)

coming soon

Local Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 48 of 62

7.3 Using Model-based/C/C++ via radCASE

Platforms: Embedded native, Embedded OS, Linux, Windows
Language Platforms: Embedded native, Embedded OS, Linux, Windows
OE: ... Embedded native, Embedded OS, Linux, Windows

7.3.1 radCASE-Assign-Strings

7.3.1.1 Basic Structure

Corresponding to the Reference_Manual, the following assign-strings exist:
CTR <Port>, …., <HardwareID> (for DI, DO)
CTR <Index>, …, <HardwareID> (for AO, CNT)
CTR <Index>, …, <Mode>, ..., <HardwareID> (for AI)

7.3.1.2 Port / Index

In the case of emBRICK®, the Port/Index is composed as follows: eB_M<x> + eB_<T><y>
where
 x = module number in the string[1..32] (255 für Dummy)
 T = coverage of the accessed data (B=byte, W=word, L=long)
 y = consecutive number of the data in the module (s. Product_Catalogue) [0...15]

Examples:
CTR eB_M1 + eB_B2, …, HID_emBRICK0
→ Access to Node 0, module 1, byte 2
CTR eB_M2 + eB_W0, …, HID_emBRICK0
→ Access to Node 0, module 2, word 0
CTR eB_M1 + eB_B8, …, HID_emBRICK1
→ Access to Node 1, module 1, byte 8

Example of an assign-string to control a digital input(I2):

 CTR eB_M1 + eB_B2 , 2 , NINV , 0 , 0 , 0 , HID_emBRICK0

Identifier(radCASE)

Module Number 1 in string

Datatype Byte

Bytenumber2

Bit 2

Logic not inverted

Position in Datablock 0(Standard)

Status 0(Standard)

HardwareID emBRICK

7.3.1.3 Application for non emBRICK® I/Os

In systems with I/Os not realized via emBRICK® but also with radCASE, port and index can be
freely chosen. It is recommended to number ports according to the port-number on the hard-
ware, according to the Index as defined in the hardware.

Local Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 49 of 62

For example:
P1 (on uP) => Port 1
P5 (on uP) => Port 5
Analog Input 1 => Index 1
PWM3 => Index 3

7.3.2 Setting Outputs

Since the dynamic configuration of the brickBUS® takes some time, the application developer

needs to ensure that no outputs are set as long as the brickBUS® is not completely initialized.

7.3.3 Flowmeter

For the assign string of the flow meter on the brickBUS® is defined, that both E_AI as well as

E_CNT have to get the sum value of the address from the structure. The sum value is the start

address of the two input words.

It is necessary to enter both assign strings as the program in the rc_lib is designed in a way that,

if applicable, modules with only E_CNT or only E_AI can be defined.

Local Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 50 of 62

7.4 Using IEC61131 via CODESYS

for Local-Bus-Access: under development

Local Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 51 of 62

7.5 Using Midddleware based via Gamma

under development

Remote Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 52 of 62

8. Remote Bus Access Programming

8.1 Using native C/C++ Programing (i.e. via MSVC)

The most easy and recommended way is to use the coupling master with a C/C++ program (i.e.

via PC/IPC and Windows, using MSVC).

A sample project is available under

http://embrick.de/downloads/remotemaster/windows/Z-CouplingBrick_MSVC_V0.04.zip

http://embrick.de/downloads/remotemaster/_PD_CouplingBrick%20Starterkit.pdf

8.2 Model-based/C/C++ with radCASE (IMACS GmbH)

The model-based developing suite radCASE offers an enhanced UML-Modeling framework and

efficient code-generator for all embedded C/C++ plattforms.

In this case radCASE generates an emBRICK RemoteMaster running as an applicaton on a Win-

dows- or Linux PC as a target (like a Soft-PLC).

For more information about radCASE see www.radcase.de.

8.2.1 Basics

The application will be generated as an autarkic Windows application radCASE-Application.exe

8.2.2 Handling

8.2.2.1 Configuration-File (eB_LAN.cfg)

This file describes the local-masters and their connected emBRICK®-modules. A remote-master

with radCASE can connect to several local-masters. Each local-master has to be assigned a

name and his IP-adress. Additionally, emBRICK®-modules that are expected to be connected to

the specific local-master can be described in the same line. Differences in connected em-

BRICK®-modules to expected emBRICK®-modules will throw an error in the log-file but other-

wise have no effect in the current implementation.

The file has to be put into …\OSDL\eB_LAN.cnf.

Comments can be made by writing a ‘*’ in the very first column of a line.

Example of a Configuration-file with 2 strings (local-masters) :

* Node, IP-Adr, ID-Coupler, ID-Modules

1: HW_1, 192.168.3.10, 1601, 2181, 2181, 2181, 2301, 4401

2: HW_2, 127.168.3.11, 1601, 7100, 7100, 7100, 7010, 7001

For using the remote master from radCASE the HAL has to support it (refer to Integration man-

ual). Also, the feature has to be activated using the Define RD_EB_REMOTEHOST.

To use the IOs of a local master (node) the Assign string has to be set accordingly. The node is

selected by providing a hardwareID of HID_EBR_NODE1 – HID_EBR_NODE32, where the number

http://embrick.de/downloads/remotemaster/windows/Z-CouplingBrick_MSVC_V0.04.zip
http://embrick.de/downloads/remotemaster/_PD_CouplingBrick%20Starterkit.pdf
http://www.radcase.de/

Remote Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 53 of 62

must match the ID in the config file (refer to Configuration-File). The index has to match the in-

dex of the IO on the local master.

Addtionally to the access of the IOs there is an additional virtual module available for each node

identified by the according hardwareID, granting additional information.

The following counters (CNT) are available:

eB_MNodeControl + eB_NC_FIRSTWARNING

eB_MNodeControl + eB_NC_FURTHERWARNING

eB_MNodeControl + eB_NC_RECONNECTS

eB_MNodeControl + eB_NC_RM_VERSION

eB_MNodeControl + eB_NC_NC_VERSION

eB_MNodeControl + eB_NC_BUSSTATUS

eB_MNodeControl + eB_NC_ERRORMODULE

Remote Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 54 of 62

8.2.2.2 Log-File

The log-file logs all detected local-masters and their connected emBRICK®-modules. It also

compares the connected emBRICK®-modules with the expected ones, as described in

eB_LAN.cnf. It an also logs permanently the connection establishments and breakdowns or

communicatuion errors and retries with their timestamps.

This log-file can be found under …\CTR\API.WinPC\binary\Release\brickBUS.log.

Example of a log-file with one local-master.

2017-12-25 21:50:46.311 -> Remote-Master, Version 29
on PC Target
Revisionnumbers:
API_SVN: 3799
radCASE_SVN: 10002
2017-12-25 21:50:46.319 -> Found Master HW_1 with IP-Address 192.168.3.10
2017-12-25 21:50:46.331 -> Starting connection to emBRICK node HW_1 on IP-Address 192.168.3.10
2017-12-25 21:50:46.341 -> Established connection to HW_1 on IP-Address 192.168.3.10
2017-12-25 21:50:46.341 -> Requesting initialization data from HW_1

2017-12-25 21:50:46.851 -> Connection closed for HW_1

2017-12-25 21:50:51.849 -> Starting connection to emBRICK node HW_1 on IP-Address 192.168.3.10
2017-12-25 21:50:51.857 -> Established connection to HW_1 on IP-Address 192.168.3.10
2017-12-25 21:50:51.858 -> Requesting initialization data from HW_1
2017-12-25 21:50:51.868 -> #Received unexpected number of modules in node HW_1: Expected: 5 Received: 2
2017-12-25 21:50:51.869 -> #Received unexpected component ID in node HW_1: Expected: 1601 Received: 1602
2017-12-25 21:50:51.872 -> #Received unexpected SlaveID for module number 1 in node HW_1: Expected: 2181 Received: 5131
2017-12-25 21:50:51.875 -> Recognized emBRICK node:

Node number | Node name | Component ID (BusProtocolVersion, SoftwareVersion, Manufacturer ID) | IP address | Number of Slaves
 1 | HW_1 | 1602 (4, 20, 1) | 192.168.3.10 | 2

Slave Device ID [OffsetOut, OffsetIn, HW-Revision, ProtocolVersion, Manufacturer ID]
{5131[0, 0, 18, 11, 1]}
{2181[1, 6, 13, 11, 1]}

2017-12-25 21:50:51.879 -> Warning on try 1: data for node HW_1 not received in time.

2017-12-25 21:51:22.580 -> Warning on try 1: data for node HW_1 not received in time.
2017-12-25 21:51:22.589 -> Warning on try 2: data for node HW_1 not received in time.
2017-12-25 21:51:22.599 -> Warning on try 3: data for node HW_1 not received in time.
2017-12-25 21:51:22.600 -> Receiving data from HW_1 timed out.
2017-12-25 21:51:22.609 -> Starting connection to emBRICK node HW_1 on IP-Address 192.168.3.10

2017-12-25 21:51:27.058 -> Established connection to HW_1 on IP-Address 192.168.3.10

2017-12-25 21:51:40.442 -> Application terminated

Note:

This log is also online available on the PC-Target as a separate message window area when

enabling the option "View" -> "Error console".

Remote Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 55 of 62

8.3 Middleware Gamma (RST GmbH)

details t.b.d

8.4 Modelbased Programing with eTrice (PROTOS GmbH)

details t.b.d

8.5 IEC61131 Soft-PLC with logi.CAD3 (logi.cals)

details t.b.d

8.6 IEC61499 Soft PLC with 4diac (fortiss GmbH)

details t.b.d

8.7 IEC61131Soft-PLC with CODESYS (3S GmbH)

8.7.1 Create your own brick description

The devdesc.xml files are used to describe the Brick itself and its I/Os.

To create your own description, follow these steps.

▪ Open the Product Catalogue.

▪ Find in the catalogue your brick description. As an example, we use the P_2Rel4Di2Ai-01

Brick, that is included in our Starterkit.

http://embrick.de/downloads/dokumente/eB_Products.pdf

Remote Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 56 of 62

▪ Scroll down to the “Process Data Image” section of your brick.

▪ Make a copy of an existing devdesc.xml file.

▪ Open the copy and search for the line that says “//Hardware Description”.

Change as you please.

Remote Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 57 of 62

Now search for the line “//Input Parameter”.

▪ Now you must look at the table from the ”Process Data Image” of your Brick.

The left table lists the Outputs and the right table lists the Inputs.

As you see in our example the Output section is only two bits. Relay 1 and 2.

The Input section is two BYTES (one WORD = two BYTES) for the Analog Input 1.

Also two BYTES (e.g. one WORD) for the Analog Input 2.

Followed by four BITS for Digital Input 1, 2, 3 and 4.

▪ With that Information we can now change the “//Input Parameter” section.

First comes the Analog Input 1. Because it is two BYTES long our type becomes “std: WORD”.

The ParameterID for Inputs starts with “1000”. For Outputs with “2000”.

And because that’s the first entry in the Input section of the “Process Data Image” the Pa-

rameterID becomes “1001”.

It does not become “1000” because that is always reserved for our status byte of every Brick.

The analog Input 2 is also two BYTES. Our type is also “std: WORD” and ParameterID is

“1002” because it is the second entry.

Next are the four Digital Inputs. They only need four BITS. So our type becomes

“localTypes:TBYTE_4bit” and the ParameterID is “1003”

The “localTypes” is needed because this type is declared inside our “devdesc.xml”. When you

are looking at the upper part of the “devdesc.xml” you can see the various declared types.

“localTypes:TBYTE_2bit”

”localTypes:TBYTE_4bit”

“localTypes:TBYTE_6bit”

“localTypes:TBYTE” (8 individual BITS)

Remote Bus Access Programming

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 58 of 62

▪ There are also the global types. “std:BYTE” (one BYTE no individual BITS) often used for the

Status Byte of every Brick.

And theres the “std:WORD” that equals two BYTES and is often used for Analog Inputs.

▪ Now to the “//Output Parameter” section.

We only have two Relays. They need two BITS. So our type becomes

“localTypes:TBYTE_2bit” and the ParameterID is “2000” because it’s the first entry in the

Output section of the “Process Data Image” and the “2000” is not reserved.

▪ If you followed the correct order from the “Process Data Image” Table your “devdesc.xml”

should now work. Save the copy under a new name and install the new device in

CodeSys.Phyton

details t.b.d

8.9 Node-RED

details t.b.d

8.10 Labview

details t.b.d

Troubleshooting

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 59 of 62

9. Troubleshooting

9.1 Slavemodul state LED

Each Brick has its own state LED. It is placed in the upper area and marked with state LED.

This LED can flash different codes as listed here.

Please make sure that all Bricks are flashing the running code.

This info is also noted in the System Manual.

Troubleshooting

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 60 of 62

9.2 Local Mode Operation

9.2.1 Check-List

Status - LED? exact in State "running"

Init-Counter?

Number of found bricks

IDs of found bricks

9.2.2 radCASE Project

Projects on uniMIND, uniBRAIN, uniCORE or a custom localmaster hardware

9.2.2.1 emBRICK Diagnosis Menü

In the menu „Service “->„Brick Overview “all information is available. This is the bricks firmware

version, protokoll version and ID. This layout is different for different display sizes.

Here is a example with the 128x64dot display:

Master Slave

(all is zero because the pictures are taken in the simulation)

Please check this:

➔ can you find all the bricks you have connected with their appropriate ID?

(the brick ID is on the label on the module)

➔ how many success.init. are shown? Normally this has to show a 1. Is this upwards counting

every second a bus error is present.

➔ How many Fail.init. are shown. This number should be 0, if it is counting up, at least one of

the bricks is defective.

9.2.3 BeagleboneBrick/RaspberryBrick Projects

In the BoardSupportPackage is an example. At the start all modules found are listed.

For details take a look in the starterkit manual. A simular way should be provided by the pro-

grammer.

Troubleshooting

Programmers Manual all information for reference only - technical changes reserved - rev. 12 Page 61 of 62

9.3 Remote Mode Operation

This test is only available for systems with the original emBRICK Remote Master Stack code in

connection with a CouplingBrick.

9.3.1 Log file

This info is in the Programmers Manual noted.

